Algorithm Design and Analysis

Lecture 6

- Topological ordering
- Greedy Algorithms

Adam Smith

9/5/2008

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Notes

• Read on your own
 – Graph bipartiteness
 – DFS implementation

• Homework notation:
 – $\log^a(n) = (\log n)^a$
 – $\lceil x \rceil = \text{smallest integer } \geq x$
 = “ceiling”
 – Useful property: $x \leq \lceil x \rceil < x + 1$

9/5/2008

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Last lecture: BFS

• Recall: Digraph G is strongly connected if for every pair of vertices, \(s \sim t \) and \(s \sim t \)

• Question: Give an algorithm for determining if a graph is connected. What is the running time?
Strong Connectivity: Algorithm

Lemma: G is strongly connected if and only if for any node s, every other node t has paths to and from s.

Theorem. Can determine if G is strongly connected in $O(m + n)$ time.

Pf.
- Pick any node s.
- Run BFS from s in G.
- Run BFS from s in G^{rev}.
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from the previous lemma.

![Diagram showing strongly connected and not strongly connected graphs](image)
Directed Acyclic Graphs

Def. An DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge \((v_i, v_j)\) means \(v_i\) must precede \(v_j\).

Def. A topological order of a directed graph \(G = (V, E)\) is an ordering of its nodes as \(v_1, v_2, ..., v_n\) so that for every edge \((v_i, v_j)\) we have \(i < j\).
Precedence Constraints

Precedence constraints. Edge \((v_i, v_j)\) means task \(v_i\) must occur before \(v_j\).

Applications.

- Course prerequisite graph: course \(v_i\) must be taken before \(v_j\).
- Compilation: module \(v_i\) must be compiled before \(v_j\). Pipeline of computing jobs: output of job \(v_i\) needed to determine input of job \(v_j\).
Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)
- Suppose that G has a topological order v_1, \ldots, v_n and that G also has a directed cycle C. Let's see what happens.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i; thus (v_j, v_i) is an edge.
- By our choice of i, we have $i < j$.
- On the other hand, since (v_j, v_i) is an edge and v_1, \ldots, v_n is a topological order, we must have $j < i$, a contradiction. □
Directed Acyclic Graphs

Lemma. If G has a topological order, then G is a DAG.

Q. Does every DAG have a topological ordering?

Q. If so, how do we compute one?
Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)

- Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
- Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.
- Then, since u has at least one incoming edge (x, u), we can walk backward to x.
- Repeat until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle. □
Directed Acyclic Graphs

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)

- **Base case:** true if $n = 1$.
- **Given DAG on** $n > 1$ **nodes, find a node** v **with no incoming edges.**
- $G - \{ v \}$ **is a DAG**, since deleting v cannot create cycles.
- **By inductive hypothesis**, $G - \{ v \}$ has a topological ordering.
- Place v first in topological ordering; then append nodes of $G - \{ v \}$ in topological order. This is valid since v has no incoming edges.

To compute a topological ordering of G:
Find a node v with no incoming edges and order it first
Delete v from G
Recursively compute a topological ordering of $G - \{ v \}$
and append this order after v
Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in $O(m + n)$ time.

Pf.

- Maintain the following information:
 - $\text{count}[w] = \text{remaining number of incoming edges}$
 - $S = \text{set of remaining nodes with no incoming edges}$
- Initialization: $O(m + n)$ via single scan through graph.
- Update: to delete v
 - remove v from S
 - decrement $\text{count}[w]$ for all edges from v to w, and add w to S if $c_{\text{count}[w]}$ hits 0
 - this is $O(1)$ per edge

Alternative algorithm: Modification of DFS (exercise?)
Design technique #1: Greedy Algorithms
Greedy Algorithms

• Build up a solution to an optimization problem at each step shortsightedly choosing the option that currently seems the best.
 – Sometimes good
 – Often does not work
Interval Scheduling Problem

- Job \(j\) starts at \(s_j\) and finishes at \(f_j\).
- Two jobs are **compatible** if they do not overlap.
- **Find**: maximum subset of mutually compatible jobs.

![Diagram of intervals](image-url)
Possible Greedy Strategies

Consider jobs in some natural order. Take next job if it is compatible with the ones already taken.

- **Earliest start time:** ascending order of s_j.
- **Earliest finish time:** ascending order of f_j.
- **Shortest interval:** ascending order of $(f_j - s_j)$.
- **Fewest conflicts:** For each job j, count the number of conflicting jobs c_j. Schedule in ascending order of c_j.

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Greedy: Counterexamples

for earliest start time

for shortest interval

for fewest conflicts
Next lecture

- We will see that adding jobs greedily in order of earliest finishing time gives an optimal solution.