Algorithm Design and Analysis

Lecture 5

- Exploring graphs

Adam Smith

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Puzzles

• Suppose an undirected graph G is connected.
 – True or false? G has at least $n-1$ edges.

• Suppose that an undirected graph G has exactly $n-1$ edges (and no self-loops)
 – True or false? G is connected.
 – What if G has $n-1$ edges and no cycles?
Paths and Connectivity

Def. A path in an undirected graph $G = (V, E)$ is a sequence P of nodes v_1, v_2, \ldots, v_k with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.
Cycles

Def. A cycle is a path $v_1, v_2, ..., v_{k-1}, v_k$ in which $v_1 = v_k$, $k > 2$, and the first $k-1$ nodes are all distinct.

cycle $C = 1-2-4-5-3-1$
Trees

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- G is connected.
- G does not contain a cycle.
- G has $n-1$ edges.

![Tree Graph](image)
Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.
Phylogeny Trees

Phylogeny trees. Describe evolutionary history of species.
Exploring a graph

Classic problem: Given vertices \(s, t \in V \), is there a path from \(s \) to \(t \)?

Idea: explore all vertices reachable from \(s \)

Two basic techniques:

• Breadth-first search (BFS)
 • Explore children in order of distance to start node

• Depth-first search (DFS)
 • Recursively explore vertex’s children before exploring siblings

9/5/2008

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

BFS algorithm.
- $L_0 = \{ s \}$.
- $L_1 =$ all neighbors of L_0.
- $L_2 =$ all nodes that do not belong to L_0 or L_1, and that have an edge to a node in L_1.
- $L_{i+1} =$ all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i.

Theorem. For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.
Breadth First Search

Property. Let T be a BFS tree of $G = (V, E)$, and let (x, y) be an edge of G. Then the level of x and y differ by at most 1.
Connected Component

Connected component. Find all nodes reachable from *s*.

![Graph](image)

Connected component containing node 1 = \{ 1, 2, 3, 4, 5, 6, 7, 8 \}.
Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.
- **Node**: pixel.
- **Edge**: two neighboring lime pixels.
- **Blob**: connected component of lime pixels.
Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.
- **Node:** pixel.
- **Edge:** two neighboring lime pixels.
- **Blob:** connected component of lime pixels.

recolor lime green blob to blue
Connected Component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path
Initially $R = \{s\}$
While there is an edge (u, v) where $u \in R$ and $v \notin R$
 Add v to R
Endwhile

Theorem. Upon termination, R is the connected component containing s.
- BFS = explore in order of distance from s.
- DFS = explore in a different way.
Generic traversal algorithm

1. \(R = \{s\} \)

2. While there is an edge \((u, v)\) where \(u \in R\) and \(v \not\in R\),
 - Add \(v\) to \(R\)

To implement this, need to choose…

• Graph representation

• Data structures to track…
 – Vertices already explored
 – Edge to be followed next

These choices affect the order of traversal
The **adjacency matrix** of a graph $G = (V, E)$, where $V = \{1, 2, \ldots, n\}$, is the matrix $A[1 \ldots n, 1 \ldots n]$ given by

$$A[i, j] = \begin{cases}
1 & \text{if } (i, j) \in E, \\
0 & \text{if } (i, j) \notin E.
\end{cases}$$

Storage: $\Theta(V^2)$

Good for **dense** graphs.

- Lookup: $O(1)$ time
- List all neighbors: $O(|V|)$
An *adjacency list* of a vertex $v \in V$ is the list $\text{Adj}[v]$ of vertices adjacent to v.

- $\text{Adj}[1] = \{2, 3\}$
- $\text{Adj}[2] = \{3\}$
- $\text{Adj}[3] = \{}$
- $\text{Adj}[4] = \{3\}$

For undirected graphs, $|\text{Adj}[v]| = \text{degree}(v)$.
For digraphs, $|\text{Adj}[v]| = \text{out-degree}(v)$.

How many entries in lists? $2|E|$

Total $\Theta(V + E)$ storage — good for *sparse* graphs.
BFS with adjacency list rep.

- Discovered[1 .. n]: array of bits (explored or not)
 - initialized to all zeros
- Queue Q
 - initialized to empty
- Tree T
 - initialized to empty
BFS pseudocode

BFS(s):
1. Set Discovered[s]=1
2. Add s to Q
3. While (Q not empty)
 a) Dequeue (u)
 b) For each edge (u,v) adjacent to u
 a) IF Discovered[v]= false then
 a) Set Discovered[v] =true
 b) Add edge (u,v) to tree T
 c) Add v to Q
Theorem: BFS takes $O(m+n)$ time

BFS(s):
1. Set $\text{Discovered}[s]=1$
 \[O(1)\text{ time, run once overall.}\]
2. Add s to Q
3. While (Q not empty)
 a) Dequeue (u)
 \[O(1)\text{ time, run once per vertex}\]
 b) For each edge (u,v) adjacent to u
 a) IF $\text{Discovered}[v]=\text{false}$ then
 a) Set $\text{Discovered}[v]=\text{true}$
 \[O(1)\text{ time per execution, run at most twice per edge}\]
 b) Add edge (u,v) to tree T
 c) Add v to Q
 \[Total: O(m+n)\text{ time (linear in input size)}\]
• If s is the roof of BFS tree
• For every vertex u,
 – path in BFS tree from s to u is a shortest path in G
 – depth in BFS tree = distance from u to s
• Proof of BFS correctness: see KT, Chapter 3.