Algorithm Design and Analysis

Lecture 2
- Analysis of Stable Matching
- Asymptotic Notation

Adam Smith

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Stable Matching Problem

- **Goal:** Given n men and n women, find a "suitable" matching.
 - Participants rate members of opposite sex.
 - Each man lists women in order of preference from best to worst.
 - Each woman lists men in order of preference from best to worst.

Men's Preference Profile

<table>
<thead>
<tr>
<th>Favorite</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>Amy</td>
<td>Bertha</td>
</tr>
<tr>
<td>Yancy</td>
<td>Bertha</td>
<td>Amy</td>
</tr>
<tr>
<td>Zeus</td>
<td>Amy</td>
<td>Bertha</td>
</tr>
</tbody>
</table>

Women's Preference Profile

<table>
<thead>
<tr>
<th>Favorite</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Yancy</td>
<td>Xavier</td>
</tr>
<tr>
<td>Bertha</td>
<td>Xavier</td>
<td>Yancy</td>
</tr>
<tr>
<td>Clare</td>
<td>Xavier</td>
<td>Yancy</td>
</tr>
</tbody>
</table>

8/27/2008

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Stable Matching Problem

• **Unstable pair**: man m and woman w are **unstable** if
 – m prefers w to his assigned match, and
 – w prefers m to her assigned match

• **Stable assignment**: no unstable pairs.

Men's Preference Profile

<table>
<thead>
<tr>
<th>favorite</th>
<th>least favorite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>Xavier</td>
<td>Amy</td>
</tr>
<tr>
<td>Yancey</td>
<td>Bertha</td>
</tr>
<tr>
<td>Zeus</td>
<td>Amy</td>
</tr>
</tbody>
</table>

Women's Preference Profile

<table>
<thead>
<tr>
<th>favorite</th>
<th>least favorite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>Amy</td>
<td>Yancey</td>
</tr>
<tr>
<td>Bertha</td>
<td>Xavier</td>
</tr>
<tr>
<td>Clare</td>
<td>Xavier</td>
</tr>
</tbody>
</table>
Review Questions

• In terms of \(n \), what is the length of the input to the Stable Matching problem, i.e., the number of entries in the tables?

 (Answer: \(2n^2 \) list entries, or \(2n^2 \log n \) bits)
Review Question

- **Brute force algorithm:** an algorithm that checks every possible solution.

- In terms of \(n \), what is the running time for the brute force algorithm for Stable Matching Problem? (Assume your algorithm goes over all possible perfect matchings.)

(Answer: \(n! \times (\text{time to check if a matching is stable}) = \Theta(n! \ n^2) \))
Propose-and-Reject Algorithm

- Propose-and-reject algorithm. [Gale-Shapley 1962]

Initialize each person to be free.
while (some man is free and hasn't proposed to every woman) {
 Choose such a man m
 w = 1st woman on m's list to whom m has not yet proposed
 if (w is free)
 assign m and w to be engaged
 else if (w prefers m to her fiancé m')
 assign m and w to be engaged, and m' to be free
 else
 w rejects m
}
Proof of Correctness: Termination

• **Claim.** Algorithm terminates after at most \(n^2 \) iterations of while loop.

• **Pf.** Each time through the loop a man proposes to a new woman. There are only \(n^2 \) possible proposals.

An instance where \(n(n-1) + 1 \) proposals required

<table>
<thead>
<tr>
<th>Victor</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wyatt</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>E</td>
</tr>
<tr>
<td>Xavier</td>
<td>C</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>Yancey</td>
<td>D</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>Zeus</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amy</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bertha</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>V</td>
<td>W</td>
</tr>
<tr>
<td>Clare</td>
<td>Y</td>
<td>Z</td>
<td>V</td>
<td>W</td>
<td>X</td>
</tr>
<tr>
<td>Diane</td>
<td>Z</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Erika</td>
<td>V</td>
<td>W</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
</tbody>
</table>

8/27/2008

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Propose-and-Reject Algorithm

• **Observation 1.** Men propose to women in decreasing order of preference.

• **Observation 2.** Once a woman is matched, she never becomes unmatched; she only "trades up."
Proof of Correctness: Perfection

• **Claim.** All men and women get matched.

• **Proof: (by contradiction)**

 – Suppose, for sake of contradiction, some guy, say Zeus, is not matched upon termination of algorithm.

 – Then some woman, say Amy, is not matched upon termination.

 – By Observation 2, Amy was never proposed to.

 – But Zeus proposes to everyone, since he ends up unmatched. □
Proof of Correctness: Stability

• **Claim.** No unstable pairs.

• **Proof:** (by contradiction)

 – Suppose A-Z is an unstable pair: they prefer each other to their partners in Gale-Shapley matching S*.

 – **Case 1:** Z never proposed to A.

 ⇒ Z prefers his GS partner to A.
 ⇒ A-Z is stable.

 – **Case 2:** Z proposed to A.

 ⇒ A rejected Z (right away or later)
 ⇒ A prefers her GS partner to Z.
 ⇒ A-Z is stable.

 – In either case A-Z is stable, a contradiction. □
Efficient Implementation

- We describe $O(n^2)$ time implementation.
- Assume men have IDs 1,…, n, and so do women.
- Engagements data structures:
 - a list of free men, e.g., a queue.
 - two arrays $\text{wife}[m]$, and $\text{husband}[w]$.
 - set entry to 0 if unmatched
 - if m matched to w then $\text{wife}[m] = w$ and $\text{husband}[w] = m$
- Men proposing data structures:
 - an array $\text{men-pref}[m, i] =$ i^{th} women on m^{th} list
 - an array $\text{count}[m] =$ how many proposals m made.
Efficient Implementation

- Women rejecting/accepting data structures
 - Does woman w prefer man m to man m'?
 - For each woman, create inverse of preference list of men.
 - Constant time queries after $O(n)$ preprocessing per woman.

```
for i = 1 to n
    inverse[pref[i]] = i
```

<table>
<thead>
<tr>
<th>Amy</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
<th>7th</th>
<th>8th</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pref</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amy</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse</td>
<td>4th</td>
<td>8th</td>
<td>2nd</td>
<td>5th</td>
<td>6th</td>
<td>7th</td>
<td>3rd</td>
<td>1st</td>
</tr>
</tbody>
</table>

Amy prefers man 3 to 6 since $\text{inverse}[3] < \text{inverse}[6]$

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Summary

• **Stable matching problem.** Given \(n \) men and \(n \) women, and their preferences, find a stable matching if one exists.

• **Gale-Shapley algorithm.** Guarantees to find a stable matching for every problem instance.
 – (Also proves that stable matching always exists)

• **Time and space complexity:** \(O(n^2) \), linear in the input size.
Brief Syllabus

• Reminders
 – Worst-case analysis
 – Asymptotic notation
 – Basic Data Structures

• Design Paradigms
 – Greedy algorithms, Divide and conquer, Dynamic programming, Network flow and linear programming

• Analyzing algorithms in other models
 – Parallel algorithms, Memory hierarchies (?)

• P, NP and NP-completeness

8/27/2008

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Measuring Running Time

• Focus on **scalability**: parameterize the running time by some measure of “size”
 – (e.g. \(n \) = number of men and women)

• Kinds of analysis
 – Worst-case
 – Average-case (requires knowing the distribution)
 – Best-case (how meaningful?)

• Exact times depend on computer; instead measure **asymptotic growth**