Hybrid arg: Extending a p.r.g.’s output

- **Given** $G: \{0,1\}^n \to \{0,1\}^{n+1}$ and a polynomial $L(n)$,
- **define** $G': \{0,1\}^n \to \{0,1\}^{L(n)}$

 1. $x_1 \leftarrow G(s)$;
 2. $x_2 \leftarrow G([x_1])$
 ...

- Output first bits of $x_1, x_2, x_3, \ldots, x_L$

(let $[x]$ denote the last n bits of x)
Hybrid arg: Extending a p.r.g.’s output

- **Theorem**: If G is a p.r.g., then G’ is p.r.g.
 - Given a distinguisher A for G’ with advantage ε, we construct a distinguisher B for G with advantage ε/L
 - Problem: If G’ is insecure, how do we localize the problem to one application of G?
 - (In general: how do we argue about the security of a system made of many parts?)
Hybrid argument

- Construct a sequence of distributions D_0, \ldots, D_L
 - $D_0 = G'(s)$, \ldots, $D_L = U_L$

- Two claims:
 - Claim 1: For some index j, A can distinguish D_{j-1} from D_j
 - Claim 2: We can use A to break the j^{th} application of G

- How do we construct distributions D_i?
“Hybrid” Distributions D_i

Distribution D_0 : same as $G'(U_n)$

Distribution D_i : first i bits are fresh, independent random coin flips

Independent, uniformly random bits

pseudorandom bits
Hybrid argument

- Let $p_i = \Pr(A(D_i) = \text{"yes"})$
 - Recall that A is a distinguisher for G', so $|p_L - p_0| > \varepsilon$
 - Suppose that $p_L - p_0 > \varepsilon$ (the case where $p_0 - p_L > \varepsilon$ is similar)
 - **Claim 1**: For some j between 1 and L, $p_j - p_{j-1} > \varepsilon/L$
 - Expand the sum:
 $$p_L - p_0 = \sum_{i=1}^{L} (p_i - p_{i-1})$$
 - One of the terms in the sum is at least ε/L

- **Claim 2**: If $p_j - p_{j-1} > \varepsilon/L$, then we can construct a distinguisher B for the j^{th} invocation of G
Distinguisher B for G

- On input y in $\{0,1\}^{n+1}$, generate an input z for A such that
 - if $y \sim G(U_n)$, then $z \sim D_{j-1}$
 - if $y \sim U_{n+1}$, then $z \sim D_j$

- Algorithm $B(y)$:
 1. $u_1, \ldots, u_{j-1} \leftarrow \{0,1\}$
 2. $x_j \leftarrow \lceil y \rceil$
 3. $b_i \leftarrow \text{last-bit}(y)$
 4. Generate b_j, \ldots, b_L as in G'
 5. Return $A(u_1, \ldots, u_{j-1}, b_j, \ldots, b_L)$
Hybrid Argument

- Claim 3: If $y \sim G(U_n)$, then $z \sim D_{j-1}$

- Claim 4: If $y \sim U_{n+1}$, then $z \sim D_j$
Concluding the argument

• We have constructed \(B \) so that

 \[
 \begin{align*}
 &\text{If } y \sim G(U_n), \text{ then } B \text{ runs } A \text{ on } z \sim D_{j-1} \\
 &\text{If } y \sim U_{n+1}, \text{ then } B \text{ runs } A \text{ on } z \sim D_j
 \end{align*}
 \]

• \(B \)'s behavior:

 \[
 \begin{align*}
 &\text{If } y \sim G(U_n), \text{ then } \Pr(B(y)=1) = \Pr(A(D_{j-1})=1) = p_{j-1} \\
 &\text{If } y \sim U_{n+1}, \text{ then } \Pr(B(y)=1) = \Pr(A(D_j)=1) = p_j
 \end{align*}
 \]

• So...

 \[
 | \Pr(B(G(U_n)=1) - \Pr(B(U_{n+1})=1) | > \epsilon/L
 \]

• \(\text{run-time}(B) \approx \text{run-time}(A) + (L \times \text{run-time}(G)) \)

• Conclusion: **Theorem:** If \(G \) is a p.r.g., then \(G' \) is a p.r.g.

 \[
 \begin{align*}
 &\text{If no adversary running in time } t+(L \times \text{run-time}(G)) \text{ distinguishes} \\
 &\text{the output of } G \text{ from random with advantage } \epsilon/L, \\
 &\text{then no adversary running time } t \text{ distinguishes the output of } G' \text{ from} \\
 &\text{random with advantage } \epsilon
 \end{align*}
 \]
One last issue

• How does B know the “magic” index j?

• Three answers:
 - We just have to show that B exists, so it suffices to show that j exists
 - Try all values of j (requires sampling to estimate the values p_i)
 - Choose j at random!
Chosen-plaintext attacks

- Capture situations where adversary has partial control over plaintext
 - Strongest notion of “passive” security (no tampering with channel)
 - Control over plaintext formalized via encryption “oracle”
(Gen, Enc, Dec) has \((t, \varepsilon)\)-indistinguishable encryptions under chosen-plaintext attacks (IND-CPA) if, for all \(\text{Adv}\) running in time at most \(t\),

\[
\Pr(\text{Adv wins}) \leq \frac{1}{2} + \varepsilon
\]
Properties of CPA security

- **Proposition:** Stateless CPA-secure encryption must be randomized
 - Suppose that $\text{Enc}_k(m)$ is a deterministic function of k and m
 - Adv can use oracle to generate ciphertexts c_0, c_1 for m_0, m_1
 - Compare c to c_0, c_1 to learn b

- **Proposition 3.22+:** IND-CPA-security for a single-fixed length message implies security for multiple, arbitrary-length messages.
 - Proof via hybrid argument
 - In book
 - Note: suffices to prove security for multiple fixed-length messages

- So how can we construct such schemes?
A first attempt

PRG as stream cipher:

- What property is needed from F?
- All the values $F_k(r)$ should look “random”
 - Aha! We have developed a language for capturing this...

Throw in some fresh random stuff?

$G(k)$

$G(k)$

m → c

r

k

m

c

$F_k(r)$

r

c

“wacky” function

ciphertext
Pseudorandom Functions

• Recall how we approached PRG’s:
 - Clear objective: uniformly random bits
 - “pseudorandom” = “PPT adversary with access to either random or pseudorandom”

• Here the object is a function F
 - For simplicity, suppose $|r| = |k| = |F_k(r)| = n$ bits
 - For fixed k, $F_k: \{0,1\}^n \rightarrow \{0,1\}^n$
 - F_k should look random to someone who doesn’t know k

• So... what is a truly random function f?
 - Look-up table with uniformly random entries

• What does “access to f” mean?
 - How many bits required to describe f? ($n2^n$)
 - Cannot “give” f to adversary...
 - Oracle language is helpful

<table>
<thead>
<tr>
<th>$f(000...0)$</th>
<th>$f(000...1)$</th>
<th>...</th>
<th>$f(111...1)$</th>
</tr>
</thead>
</table>

Pseudorandom functions

- \(F: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}^* \)
- (For simplicity) For every \(k \in \{0,1\}^n \), \(F_k: \{0,1\}^n \rightarrow \{0,1\}^n \)

\[D \]

\[x_1 \]
\[\rightarrow \]
\[F_k(x_1) \]
\[k \leftarrow \{0,1\}^n \]
\[x_2 \]
\[\rightarrow \]
\[F_k(x_2) \]

“yes” / “no”

\[f \]

\[x_1 \]
\[\rightarrow \]
\[F_k(x_1) \]
\[x_2 \]
\[\rightarrow \]
\[F_k(x_2) \]

“yes” / “no”

- \(F \) is a (length-preserving) pseudorandom function if for all PPT \(D \),

\[\left| \Pr(D^{F_k(\cdot)}(1^n) = \text{yes}) - \Pr(D^{f(\cdot)}(1^n) = \text{yes}) \right| \leq \operatorname{negl}(n) \]

where \(k \leftarrow \{0,1\}^n \) and \(f \) is a uniformly random function