Lecture 24
Balanced Search Trees
• Red-Black Trees

Adam Smith
Balanced search trees

Balanced search tree: A search-tree data structure for which a height of $O(\lg n)$ is guaranteed when implementing a dynamic set of n items.

Examples:
- AVL trees
- 2-3 trees
- 2-3-4 trees
- B-trees
- Red-black trees
Red-black trees

This data structure requires an extra one-bit color field in each node.

Red-black properties:
1. Every node is either red or black.
2. The root and leaves (NIL’s) are black.
3. If a node is red, then its parent is black.
4. All simple paths from any node x to a descendant leaf have the same number of black nodes $= \text{black-height}(x)$.
Example of a red-black tree

$h = 4$
1. Every node is either red or black.
2. The root and leaves (NIL’s) are black.
3. If a node is red, then its parent is black.
Example of a red-black tree

4. All simple paths from any node x to a descendant leaf have the same number of black nodes = $\text{black-height}(x)$.
Height of a red-black tree

Theorem. A red-black tree with \(n \) keys has height \(h \leq 2 \lg(n + 1) \).

Proof. (The book uses induction. Read carefully.)

Intuition:

- Merge red nodes into their black parents.
Theorem. A red-black tree with n keys has height \(h \leq 2 \lg(n + 1) \).

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Theorem. A red-black tree with \(n \) keys has height \(h \leq 2 \log(n + 1) \).

Proof. (The book uses induction. Read carefully.)

Intuition:
• Merge red nodes into their black parents.
Theorem. A red-black tree with \(n \) keys has height
\[
h \leq 2 \log(n + 1).
\]

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Theorem. A red-black tree with n keys has height $h \leq 2 \log(n + 1)$.

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
Height of a red-black tree

Theorem. A red-black tree with n keys has height $h \leq 2 \lg(n + 1)$.

Proof. (The book uses induction. Read carefully.)

Intuition:
- Merge red nodes into their black parents.
- This process produces a tree in which each node has 2, 3, or 4 children.
- The 2-3-4 tree has uniform depth h' of leaves.
Proof (continued)

• We have \(h' \geq h/2 \), since at most half the leaves on any path are red.

• The number of leaves in each tree is \(n + 1 \)
 \[\Rightarrow n + 1 \geq 2^{h'} \]
 \[\Rightarrow \lg(n + 1) \geq h' \geq h/2 \]
 \[\Rightarrow h \leq 2 \lg(n + 1). \]
Query operations

Corollary. The queries `SEARCH`, `MIN`, `MAX`, `SUCCESSOR`, and `PREDECESSOR` all run in $O(lg \ n)$ time on a red-black tree with n nodes.
Modifying operations

The operations \texttt{INSERT} and \texttt{DELETE} cause modifications to the red-black tree:

- the operation itself,
- color changes,
- restructuring the links of the tree via "rotations".
Rotations maintain the inorder ordering of keys:
\[a \in \alpha, \ b \in \beta, \ c \in \gamma \ \Rightarrow \ a \leq A \leq b \leq B \leq c. \]

A rotation can be performed in \(O(1) \) time.
Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.
Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert $x = 15$.
- Recolor, moving the violation up the tree.
Idea: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert $x = 15$.
- Recolor, moving the violation up the tree.
- **Right-Rotate(18)**.
Insertion into a red-black tree

Idea: Insert x in tree. Color x red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:
- Insert $x = 15$.
- Recolor, moving the violation up the tree.
- **Right-Rotate** (18).
- **Left-Rotate** (7) and recolor.
Insertion into a red-black tree

Idea: Insert \(x \) in tree. Color \(x \) red. Only red-black property 3 might be violated. Move the violation up the tree by recoloring until it can be fixed with rotations and recoloring.

Example:

- Insert \(x = 15 \).
- Recolor, moving the violation up the tree.
- **Right-Rotate(18).**
- **Left-Rotate(7) and recolor.**
Pseudocode

RB-INSERT\((T, x)\)

TREE-INSERT\((T, x)\)

\[\text{color}[x] \leftarrow \text{RED} \quad \triangleright \text{only RB property 3 can be violated}\]

\textbf{while} \; x \neq \text{root}[T] \; \textbf{and} \; \text{color}[p[x]] = \text{RED} \; \textbf{do} \;

\textbf{if} \; p[x] = \text{left}[p[p[x]]] \;

\textbf{then} \; y \leftarrow \text{right}[p[p[x]]] \quad \triangleright \; y = \text{aunt/uncle of} \; x

\textbf{if} \; \text{color}[y] = \text{RED} \;

\textbf{then} \; \langle \text{Case 1} \rangle

\textbf{else} \; \textbf{if} \; x = \text{right}[p[x]] \;

\textbf{then} \; \langle \text{Case 2} \rangle \quad \triangleright \text{Case 2 falls into Case 3}

\langle \text{Case 3} \rangle

\textbf{else} \; \langle \text{“then” clause with “left” and “right” swapped} \rangle

\text{color}[\text{root}[T]] \leftarrow \text{BLACK}
Graphical notation

Let \(\bigtriangleup \) denote a subtree with a black root.

All \(\bigtriangleup \)'s have the same black-height.
Case 1

(Or, children of A are swapped.)

Push C''s black onto A and D, and recurse, since C''s parent may be red.
Case 2

Transform to Case 3.

Left-Rotate(A)
Case 3

\[
\text{RIGHT-ROTATE}(C)
\]

Done! No more violations of RB property 3 are possible.
Analysis

- Go up the tree performing Case 1, which only recolors nodes.
- If Case 2 or Case 3 occurs, perform 1 or 2 rotations, and terminate.

Running time: $O(\lg n)$ with $O(1)$ rotations.

RB-DELETE — same asymptotic running time and number of rotations as **RB-INSERT** (see textbook).