Data Structures

• So far in this class: designing algorithms
 ➢ Inputs and outputs were specified, we wanted to design the fastest algorithm
 ➢ The representation was fixed (e.g. a sorted array)

• Another important question:
 ➢ How can we represent information so that there are fast algorithms for performing important operations?
 ➢ This is the study of data structures
Some important data structures

- arrays
- linked lists
- graphs
- binary search trees
- heaps

What about…

- stacks?
- queues?

Not exactly data structures. These are **abstract data types** (note: the text book doesn’t distinguish data structures from abstract data types, but we will in this class)
Abstract Data Types

• “Interface” between the real data and the outside world
• Collection of operations to be performed on data
• No algorithms!
 ➢ Just a description of desired outcomes
• Important tool in the design of computer programs
 ➢ First, figure out what you need to do with your data
 ➢ Worry about implementing it later.
• Sort of like a “class”, an “interface” or a “template” in object-oriented programming (but not exactly like any of these)
Example: Queues

- Suppose you manage the list of cases waiting for trial at a courthouse
 - You maintain a “bunch” of court cases
 - As cases come in you add them to your list
 - When the court finishes a trial, you find the next case in line and it goes to trial
 - What’s the ADT you’re using?

- A **Queue** holds a *set* of elements and supports
 - Enqueue(Q, x): add x to the rear of the queue
 - Dequeue(Q): get element from the front of the queue and remove it from the queue
 - MakeNew(): create a new, empty queue
How should we implement a queue?

• One option: an array along with two indices *head* and *tail*

• As elements are added, increment *tail*\([Q] \)

• As elements are removed, increment *head*\([Q] \)

• Wrap around as necessary

• After Enqueue\((Q, 17)\), Enqueue\((Q, 11)\), Enqueue\((Q, 40)\), Dequeue\((Q)\), we get:

```
1 2 3 4 5 6 7 8 9 10 11 12
Q 11 40 7 2 5 6 17
```

\(\text{head} [Q] = 7 \quad \text{tail} [Q] = 11 \)

\(\text{tail} [Q] = 2 \quad \text{head} [Q] = 7 \)
Satellite data

- May have other “satellite data” along with each record (case details, name of plaintiff, etc)
- Typically: include a pointer for each element
Pseudocode

Enqueue(Q, x)
1. \(Q[\text{tail}[Q]] \leftarrow x \)
2. \(\textbf{if}\ tail[Q] = \text{length}[Q] \)
3. \(\textbf{then}\ tail[Q] \leftarrow 1 \)
4. \(\textbf{else}\ tail[Q] \leftarrow tail[Q] + 1 \)

Dequeue(Q,x)
1. \(x \leftarrow Q[\text{head}[Q]] \)
2. \(\textbf{if}\ head[Q] = \text{length}[Q] \)
3. \(\textbf{then}\ head[Q] \leftarrow 1 \)
4. \(\textbf{else}\ head[Q] \leftarrow head[Q] + 1 \)
5. \(\textbf{return}\ x \)

Notice that this code doesn’t handle what happens when the queue fills up or when it is empty!
How long do the operations take?

- Enqueue: $O(1)$
- Dequeue: $O(1)$
- MakeNew: $O(1)$ if memory implemented well
- Storage space = length of array n
 - Maximum queue size limited to n
 - Wastes space is size of L is much smaller than n

- What do you do when queue is full?
 - Crash the program? (sometimes)
 - Better solution: allocate bigger array
What about using a linked list?

- Dynamic structure uses memory flexibly
- **Doubly linked list** is a data structure
 - collection of nodes
 - Each node has at least three fields
 - next (pointer)
 - previous (pointer)
 - key (depends on application: case number?)
 - may have satellite data here too
 - Keep two **pointers** for each list: \(\text{head}[Q], \text{tail}[Q] \)
Pseudocode for list-based queue

Enqueue(Q, x)

1. newnode ← New node
2. key[newnode] ← x
3. prev[newnode] ← tail[Q]
4. next[newnode] ← NIL
5. next[tail[Q]] ← newnode
6. tail[Q] ← newnode

▷ Note: no check for an empty list.

Dequeue(Q, x)

1. oldnode ← head[Q]
2. head[Q] ← next[oldnode]
3. prev[head[Q]] ← NIL
4. return key[oldnode]

▷ Note: no deallocation, no check for an empty list.
What about using a linked list?

• How long do operations take?
 ➢ Enqueue: $O(1)$
 ➢ Dequeue: $O(1)$
 ➢ MakeNew: $O(1)$
 ➢ Storage: $O(\text{size}(Q))$, i.e. the number of elements currently in the queue

• Better storage use than array, right?
 ➢ But constants are better for arrays
 ➢ Clever allocation of memory can make array also use $O(\text{size}(Q))$ memory (we may see this in later lectures)
Stacks

- A **stack** holds a set of elements and supports
 - Push\((S,x)\): add element \(x\) to the top of stack \(S\)
 - Pop\((S)\): remove the top element from the stack and return its value
 - MakeNew(): Create a new, empty stack
Example: Stacks

• Suppose you need to check if delimiters (parentheses and brackets) are properly balanced
 \{((\{\})\{()\})\} versus \{((\{\})\{()\})(\})\}

• Scan through the input, keeping a list of currently open delimiters
 ➢ When I meet an opening delimiter, add it to my list
 ➢ When I meet a closing delimiter,
 • check if the last thing I added to my list was of the same type.
 • If so, remove it and continue.
 • If not, then output “delimiters not matched.”
How should we implement a stack?

- Usually: an array along with an index top

As elements are added, increment $top[Q]$

As elements are removed, decrement $top[Q]$

$top[Q]=11$