Lecture 10

Solving recurrences

• Master theorem

Adam Smith
Review questions

• Guess the solution to the recurrence:
 \[T(n) = 2T(n/3) + n^{3/2}. \]
 (Answer: \(\Theta(n^{3/2}) \).

• Draw the recursion tree for this recurrence.
 a. What is its height?
 (Answer: \(h = \log_3 n \).)
 b. What is the number of leaves in the tree?
 (Answer: \(n^{(1/\log 3)} \).)
The master method applies to recurrences of the form

\[T(n) = a T(n/b) + f(n) , \]

where \(a \geq 1 \), \(b > 1 \), and \(f \) is asymptotically positive, that is \(f(n) > 0 \) for all \(n > n_0 \).
Three common cases

Compare $f(n)$ with $n^{\log ba}$:

1. $f(n) = O(n^{\log ba - \varepsilon})$ for some constant $\varepsilon > 0$.
 • $f(n)$ grows polynomially slower than $n^{\log ba}$ (by an n^ε factor).

 Solution: $T(n) = \Theta(n^{\log ba})$.

Three common cases

Compare $f(n)$ with $n^{\log ba}$:

1. $f(n) = O(n^{\log ba} - \varepsilon)$ for some constant $\varepsilon > 0$.
 • $f(n)$ grows polynomially slower than $n^{\log ba}$ (by an n^ε factor).

 \text{Solution:} \ T(n) = \Theta(n^{\log ba}) .

2. $f(n) = \Theta(n^{\log ba} \lg^k n)$ for some constant $k \geq 0$.
 • $f(n)$ and $n^{\log ba}$ grow at similar rates.

 \text{Solution:} \ T(n) = \Theta(n^{\log ba} \lg^{k+1} n) .
Compare $f(n)$ with $n^{\log_{b}a}$:

3. $f(n) = \Omega(n^{\log_{b}a} + \varepsilon)$ for some constant $\varepsilon > 0$.
 - $f(n)$ grows polynomially faster than $n^{\log_{b}a}$ (by an n^{ε} factor),

 and $f(n)$ satisfies the regularity condition that $af(n/b) \leq cf(n)$ for some constant $c < 1$.

Solution: $T(n) = \Theta(f(n))$.
Idea of master theorem

Recursion tree:

\[f(n) \]
\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \]
\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \]
\[\vdots \]
\[T(1) \]
Idea of master theorem

Recursion tree:

\[T(n) = \begin{cases} f(n) & \text{if } a = 1, \\ f(n) \leq \frac{af(n)}{b^2} & \text{if } a > 1, \\ f(n) \leq \frac{af(n)}{b} & \text{if } 0 < a \leq 1. \end{cases} \]
Idea of master theorem

Recursion tree:

\[h = \log_b n \]

\[T(1) \]

\[f(n) \]

\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad a f(n/b) \]

\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \quad a^2 f(n/b^2) \]

2/6/12

S. Raskhodnikova and A. Smith. Based on notes by E. Demaine and C. Leiserson
Idea of master theorem

Recursion tree:

\[f(n) \]

\[\frac{f(n)}{a} \]

\[\frac{f(n/b)}{a} \]

\[\frac{f(n/b^2)}{a} \]

\[\vdots \]

\[T(1) \]

\[\text{#leaves} = a^h \]

\[= a^{\log_b n} \]

\[= n^{\log_b a} \]

2/6/12

S. Raskhodnikova and A. Smith. Based on notes by E. Demaine and C. Leiserson
Idea of master theorem

Recursion tree:

\[h = \log_b n \]

\[f(n) \]

\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \]

\[\cdots \]

\[a \]

\[a^2 f(n/b^2) \]

\[\vdots \]

\[T(1) \]

\[n^\log_b a \quad T(1) \]

\[\Theta(n^\log_b a) \]

CASE 1: The weight increases geometrically from the root to the leaves. The leaves hold a constant fraction of the total weight.

S. Raskhodnikova and A. Smith. Based on notes by E. Demaine and C. Leiserson
Idea of master theorem

Recursion tree:

\[h = \log_b n \]

\[f(n) \]

\[a \]

\[f(n/b) \]

\[f(n/b) \]

\[\cdots \]

\[f(n/b) \]

\[a f(n/b) \]

\[a^2 f(n/b^2) \]

\[\cdots \]

\[n^{\log_b a} T(1) \]

\[\Theta(n^{\log_b a} \log n) \]

CASE 2: \((k = 0)\) The weight is approximately the same on each of the \(\log_b n\) levels.
Idea of master theorem

Recursion tree:

\[f(n) \]

\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad a f(n/b) \]

\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \quad a^2 f(n/b^2) \]

\[T(1) \]

\[n^{\log_b a} T(1) \]

\[\Theta(f(n)) \]

CASE 3: The weight decreases geometrically from the root to the leaves. The root holds a constant fraction of the total weight.

S. Raskhodnikova and A. Smith. Based on notes by E. Demaine and C. Leiserson
Examples

Ex. \(T(n) = 4T(n/2) + n \)
\[a = 4, \ b = 2 \Rightarrow n^{\log_b a} = n^2; \ f(n) = n. \]

Case 1: \(f(n) = O(n^2 - \varepsilon) \) for \(\varepsilon = 1. \)
∴ \(T(n) = \Theta(n^2). \)
Examples

Ex. \[T(n) = 4T(n/2) + n \]
a = 4, b = 2 \(\Rightarrow \) \(n^{\log_b a} = n^2; f(n) = n. \)

Case 1: \(f(n) = \mathcal{O}(n^2 - \varepsilon) \) for \(\varepsilon = 1. \)

\[\therefore T(n) = \Theta(n^2). \]

Ex. \[T(n) = 4T(n/2) + n^2 \]
a = 4, b = 2 \(\Rightarrow \) \(n^{\log_b a} = n^2; f(n) = n^2. \)

Case 2: \(f(n) = \Theta(n^2 \lg^kn), \) that is, \(k = 0. \)

\[\therefore T(n) = \Theta(n^2 \lg n). \]
Examples

Ex. \(T(n) = 4T(n/2) + n^3 \)

\(a = 4, \ b = 2 \Rightarrow n^{\log_b a} = n^2; \ f(n) = n^3. \)

CASE 3: \(f(n) = \Omega(n^2 + \varepsilon) \) for \(\varepsilon = 1 \)

and \(4(n/2)^3 \leq cn^3 \) (reg. cond.) for \(c = 1/2. \)

\(\therefore T(n) = \Theta(n^3). \)
Examples

Ex. $T(n) = 4T(n/2) + n^3$

$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3$.

Case 3: $f(n) = \Omega(n^2 + \varepsilon)$ for $\varepsilon = 1$
and $4(n/2)^3 \leq cn^3$ (reg. cond.) for $c = 1/2$.

$\therefore T(n) = \Theta(n^3)$.

Ex. $T(n) = 4T(n/2) + n^2/\lg n$

$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\lg n$.

Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $n^\varepsilon = \omega(\lg n)$.