Lectures 11-12
Priority Queues and Heaps
Priority Queue ADT

- Dynamic set of pairs (key, data), called elements
- Supports operations:
 - MakeNewPQ()
 - `Insert(S, x)` where `S` is a PQ and `x` is a (key,data) pair
 - `Extract-Max(S)` removes and returns the element with the highest key value (or one of them if several have the same value)
- Example: managing jobs on a processor, want to execute job in queue with the highest priority
- Can also get a “min” version, that supports `Extract-Min` instead of `Extract-Max`
- Sometimes support additional operations like `Delete`, `Increase-Key`, `Decrease-Key`, etc.
Heaps: Tree Structure

- Data Structure that implements Priority Queue
 - Conceptually: binary tree
 - In memory: (often) stored in an array
- Recall: complete binary tree
 - all leaves at the same level, and
 - every internal node has exactly 2 children
- Heaps are nearly complete binary trees
 - Every level except possibly the bottom one is full
 - Bottom layer is filled left to right
Height

• Heap Height =
 ➢ length of longest simple path from root to some leaf
 ➢ e.g. a one-node heap has height 0,
 a two- or three-node heap has height 1, ...

• Exercises:
 ➢ What is are max. and min. number of elements in a
 heap of height h?
 • ans: min = 2^h,
 max = 2^{h+1} -1
 ➢ What is height as a function of number of nodes n?
 • ans: floor(log(n))
Array representation

- Instead of dynamically allocated tree, heaps often represented in a fixed-size array
 - smaller constants, works well in hardware.
- Idea: store elements of tree layer by layer, top to bottom, left to right
- Navigate tree by calculating positions of neighboring nodes:
 - Left(i) := 2i
 - Right(i) := 2i+1
 - Parent(i) := floor(i/2)
Review Questions

• Is the following a valid max-heap?
 ➢ 20 10 4 9 6 3 2 8 7 5 12 1
 ➢ (If not, repair it to make it valid)

• Is an array sorted in decreasing order a valid max-heap?
Local Repair: Heapify “Down”

- Two important “local repair operations”:
 - **Heapify “Down”, Heapify “Up”**
- Suppose we start from a valid heap and **decrease** the key of node i, so
 - it is still smaller than parent
 - the two subtrees rooted at i remain valid
- How do we rearrange nodes to make the heap valid again?
 - Idea: let new, smaller key “sink” to correct position
 - Find index with largest key among \{ i, Left(i), Right(i) \}
 - If $i \neq$ largest, EXCHANGE i with largest and recurse on largest
Local Repair: Heapify “Down”

- Pseudocode in book

- Running time: $O(\text{height}) = O(\log n)$
 - Tight in worst case

- Correctness: by induction on height
MAX-HEAPIFY(-DOWN)

- Exercise: what does Max-Heapify do on the following input?
 - 2.5 10 4 9 6 3 2 8 7 5 0 1
- This gives us our first PQ operation:
- Extract-Max(A)
 1. \(\text{tmp} := A[1]\)
 3. \(\text{heap-size} := \text{heap-size}-1\)
 4. **MAX-HEAPIFY-DOWN**(A, 1)
 5. **return** tmp
Local Repair: Heapify “Up”

- Two important “local repair operations”
 - Heapify “Down”
 - Heapify “Up”

- Suppose we start from a valid heap and increase the key of node i, so
 - it is still larger than both children, but
 - might be larger than parent

- How do we rearrange nodes to make the heap valid again?
 - Idea: let new, larger key “float” to right position
 - If $A[i] > A[\text{Parent}(i)]$, EXCHANGE i with parent and recurse on parent
Local Repair: Heapify “Up”

- Pseudocode in book (see “Increase-key”)
- Running time: \(O(\log n) \)
 - tight in worst case
- Correctness: by induction on height
MAX-HEAPIFY(-UP)

- Exercise: what does Max-Heapify do on the following input?
 - 20 10 4 9 6 3 2 8 7 21 0 1
- This gives us our second PQ operation:
- Insert(A,x)
 1. A[heap-size+1] := x
 2. heap-size := heap-size+1
 3. MAX-HEAPIFY-UP(A,heap-size)
Other PQ operations

- Max(S): return max element without extracting it
- Increase-Key(S,i,new-key)
- Decrease-Key(S,i,new-key)
 - Both of these require knowing position of desired element
 - Can be taken care by “augmenting” using a dictionary data structure, such as hash table
Heap Sort

- Heaps give an easy $O(n \log n)$ sorting algorithm:
 - For $i=2$ to n
 - Insert($A, A[i]$)
 - For $i= n$ downto 3
 - $A[i] := \text{Extract-Max}(A)$

- There is a faster way ($O(n)$ time) to build a heap from an unsorted array.
Search

• Can we search for an element in a heap in sublinear (that is, o(n)) time, in the worst case?

• How would you prove that such a search algorithm does not exist?