Lecture 10
Abstract Data Types
Queues

Adam Smith
Data Structures

• So far in this class: designing algorithms
 ➢ Inputs and outputs were specified, we wanted to design the fastest algorithm
 ➢ The representation was fixed (e.g. a sorted array)
• Another important question:
 ➢ How can we represent information so that there are fast algorithms for performing important operations?
 ➢ This is the study of data structures
Some important data structures

- arrays
- linked lists
- graphs
- binary search trees
- heaps

What about…

- stacks?
- queues?

Not exactly data structures.
These are abstract data types
(note: the text book doesn’t distinguish
data structures from abstract data
types, but we will in this class)
Abstract Data Types

• “Interface” between the real data and the outside world
• Collection of operations to be performed on data
• No algorithms!
 ➢ Just a description of desired outcomes
• Important tool in the design of computer programs
 ➢ First, figure out what you need to do with your data
 ➢ Worry about implementing it later.
• Sort of like a “class”, an “interface” or a “template” in object-oriented programming (but not exactly like any of these)
Example: Queues

• Suppose you manage the list of cases waiting for trial at a courthouse
 ➢ You maintain a “bunch” of court cases
 ➢ As cases come in you add them to your list
 ➢ When the court finishes a trial, you find the next case in line and it goes to trial
 ➢ What’s the ADT you’re using?

• A Queue holds a set of elements and supports
 ➢ Enqueue(Q, x): add x to the rear of the queue
 ➢ Dequeue(Q): get element from the front of the queue and remove it from the queue
 ➢ MakeNew(): create a new, empty queue
How should we implement a queue?

• One option: an array along with two indices $head$ and $tail$

- As elements are added, increment $tail[Q]$
- As elements are removed, increment $head[Q]$
- Wrap around as necessary

• After Enqueue($Q, 17$), Enqueue($Q, 11$), Enqueue($Q, 40$), Dequeue(Q), we get:
Satellite data

- May have other “satellite data” along with each record (case details, name of plaintiff, etc)
- Typically: include a pointer for each element

\[Q \]

\[
\begin{array}{cccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\end{array}
\]

- Case number 3
 Name: Adam Smith
 Charge: Assigning hard problems
- Case number 7
 ...
- Case number 2
 ...
- Case number 6
 ...
- Case number 5
 ...

\(\text{head}[Q]=7 \) \(\text{tail}[Q]=11 \)
Pseudocode

ENQUEUE(Q, x)
1. $Q[tail[Q]] \leftarrow x$
2. if $tail[Q] = length[Q]$
3. then $tail[Q] \leftarrow 1$
4. else $tail[Q] \leftarrow tail[Q] + 1$

DEQUEUE(Q, x)
1. $x \leftarrow Q[tail[Q]]$
2. if $head[Q] = length[Q]$
3. then $head[Q] \leftarrow 1$
4. else $head[Q] \leftarrow head[Q] + 1$
5. return x

Notice that this code doesn’t handle what happens when the queue fills up or when it is empty!
How long do the operations take?

- **Enqueue**: $O(1)$
- **Dequeue**: $O(1)$
- **MakeNew**: $O(1)$ if memory implemented well
- **Storage space** = length of array n
 - Maximum queue size limited to n
 - Wastes space is size of L is much smaller than n

- What do you do when queue is full?
 - Crash the program? (sometimes)
 - Better solution: allocate bigger array
What about using a linked list?

- Dynamic structure uses memory flexibly
- **Doubly linked list** is a data structure
 - collection of nodes
 - Each node has at least three fields
 - next (pointer)
 - previous (pointer)
 - key (depends on application: case number?)
 - may have satellite data here too
 - Keep two **pointers** for each list: `head[Q], tail[Q]`
Pseudocode for list-based queue

ENQUEUE(Q, x)
1. $newnode \leftarrow \text{New node}$
2. $key[newnode] \leftarrow x$
3. $prev[newnode] \leftarrow \text{tail}[Q]$
4. $next[newnode] \leftarrow \text{NIL}$
5. $next[tail[Q]] \leftarrow newnode$
6. $tail[Q] \leftarrow newnode$

\triangleright Note no check for an empty list.

DEQUEUE(Q, x)
1. $oldnode \leftarrow head[Q]$
2. $head[Q] \leftarrow next[oldnode]$
3. $prev[head[Q]] \leftarrow \text{NIL}$
4. $\text{return } key[oldnode]$

\triangleright Note: no deallocation, no check for an empty list.
What about using a linked list?

- How long do operations take?
 - Enqueue: $O(1)$
 - Dequeue: $O(1)$
 - MakeNew: $O(1)$
 - Storage: $O(\text{size}(Q))$, i.e. the number of elements currently in the queue

- Better storage use than array, right?
 - But constants are better for arrays
 - Clever allocation of memory can make array also use $O(\text{size}(Q))$ memory (we may see this in later lectures)
Stacks

- A stack holds a set of elements and supports
 - Push(S,x): add element x to the top of stack S
 - Pop(S): remove the top element from the stack and return its value
 - MakeNew(): Create a new, empty stack
Example: Stacks

- Suppose you need to check if delimiters (parentheses and brackets) are properly balanced {(({}))}{()} versus {(({}){})(})}

- Scan through the input, keeping a list of currently open delimiters
 - When I meet an opening delimiter, add it to my list
 - When I meet a closing delimiter,
 - check if the last thing I added to my list was of the same type.
 - If so, remove it and continue.
 - If not, then output “delimiters not matched.”
How should we implement a stack?

- Usually: an array along with an index top

As elements are added, increment $top[Q]$

As elements are removed, decrement $top[Q]$

$top[Q]=11$