LECTURE 9
Solving recurrences
• Master theorem
Review questions

• Guess the solution to the recurrence:
 \[T(n) = 2T(n/3) + n^{3/2}. \]

 (Answer: \(\Theta(n^{3/2}). \))

• Draw the recursion tree for this recurrence.
 a. What is its height?

 (Answer: \(h = \log_3 n. \))

 b. What is the number of leaves in the tree?

 (Answer: \(n^{(1/\log 3)}. \))
The master method

The master method applies to recurrences of the form

\[T(n) = a \cdot T(n/b) + f(n), \]

where \(a \geq 1 \), \(b > 1 \), and \(f \) is asymptotically positive, that is \(f(n) > 0 \) for all \(n > n_0 \).
Three common cases

Compare $f(n)$ with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$.
 - $f(n)$ grows polynomially slower than $n^{\log_b a}$ (by an n^ε factor).

 Solution: $T(n) = \Theta(n^{\log_b a})$.
Three common cases

Compare $f(n)$ with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$.
 - $f(n)$ grows polynomially slower than $n^{\log_b a}$ (by an n^ϵ factor).

 Solution: $T(n) = \Theta(n^{\log_b a})$.

2. $f(n) = \Theta(n^{\log_b a \lg^k n})$ for some constant $k \geq 0$.
 - $f(n)$ and $n^{\log_b a}$ grow at similar rates.

 Solution: $T(n) = \Theta(n^{\log_b a \lg^{k+1} n})$.
Three common cases (cont.)

Compare \(f(n) \) with \(n^{\log ba} \):

3. \(f(n) = \Omega(n^{\log ba} + \varepsilon) \) for some constant \(\varepsilon > 0 \).
 - \(f(n) \) grows polynomially faster than \(n^{\log ba} \) (by an \(n^\varepsilon \) factor),

and \(f(n) \) satisfies the *regularity condition* that \(af(n/b) \leq cf(n) \) for some constant \(c < 1 \).

Solution: \(T(n) = \Theta(f(n)) \).
Idea of master theorem

Recursion tree:

\[f(n) \]
\[a \]
\[\frac{f(n)}{b} \quad \frac{f(n)}{b} \quad \cdots \quad \frac{f(n)}{b} \]
\[a \]
\[\frac{f(n/b^2)}{b^2} \quad \frac{f(n/b^2)}{b^2} \quad \cdots \quad \frac{f(n/b^2)}{b^2} \]
\[/ \]
\[/ \]
\[/ \]
\[T(1) \]
Idea of master theorem

Recursion tree:

\[f(n) \quad a \quad f(n) \]
\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad a f(n/b) \]
\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \quad a^2 f(n/b^2) \]
\[\vdots \]
\[T(1) \]
Idea of master theorem

Recursion tree:

\[f(n) \quad \cdots \quad a f(n/b) \]
\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b/b) \]
\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \quad a^2 f(n/b^2) \]

\[h = \log_b n \]

\[T(1) \]
Idea of master theorem

Recursion tree:

\[h = \log_b n \]

\[f(n) \]

\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad a f(n/b) \]

\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \quad a^2 f(n/b^2) \]

\[\text{#leaves} = a^h \]

\[= a^{\log_b n} \]

\[= n^{\log_b a} \]

\[T(1) \]

\[= n^{\log_b a} T(1) \]
Idea of master theorem

Recursion tree:

\[f(n) \overset{a}{\longrightarrow} f(n) \]
\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \overset{a}{\longrightarrow} af(n/b) \]
\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \overset{a}{\longrightarrow} a^2f(n/b^2) \]
\[\vdots \]
\[T(1) \]

\[h = \log_b n \]

CASE 1: The weight increases geometrically from the root to the leaves. The leaves hold a constant fraction of the total weight.

\[n^{\log_b a} T(1) \]

\[\Theta(n^{\log_b a}) \]
Idea of master theorem

Recursion tree:

\[f(n) \quad a \quad f(n) \]
\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \quad a f(n/b) \]
\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \quad a^2 f(n/b^2) \]
\[\vdots \]
\[T(1) \quad n^{\log_b a} T(1) \quad \Theta(n^{\log_b a} \log n) \]

CASE 2: \((k = 0)\) The weight is approximately the same on each of the \(\log_b n\) levels.
Idea of master theorem

Recursion tree:

\[h = \log_b n \]

\[f(n) \]

\[f(n/b) \quad f(n/b) \quad \cdots \quad f(n/b) \]

\[a \quad a \quad a \quad \cdots \quad a \]

\[f(n/b^2) \quad f(n/b^2) \quad \cdots \quad f(n/b^2) \]

\[a^2 f(n/b^2) \]

CASE 3: The weight decreases geometrically from the root to the leaves. The root holds a constant fraction of the total weight.

\[n^{\log_b a} T(1) \]

\[\Theta(f(n)) \]
Examples

Ex. \(T(n) = 4T(n/2) + n \)

\[a = 4, \ b = 2 \implies n^{\log_b a} = n^2; \ f(n) = n. \]

Case 1: \(f(n) = O(n^{2-\varepsilon}) \) for \(\varepsilon = 1. \)

\[\therefore T(n) = \Theta(n^2). \]
Examples

Ex. \[T(n) = 4T(n/2) + n \]
\[a = 4, \ b = 2 \Rightarrow n^{\log b a} = n^2; \ f(n) = n. \]

CASE 1: \[f(n) = O(n^2 - \varepsilon) \] for \(\varepsilon = 1. \)
\[\therefore \ T(n) = \Theta(n^2). \]

Ex. \[T(n) = 4T(n/2) + n^2 \]
\[a = 4, \ b = 2 \Rightarrow n^{\log b a} = n^2; \ f(n) = n^2. \]

CASE 2: \[f(n) = \Theta(n^2 \lg^0 n), \text{ that is, } k = 0. \]
\[\therefore \ T(n) = \Theta(n^2 \lg n). \]
Examples

Ex. \(T(n) = 4T(n/2) + n^3 \)
\[a = 4, \quad b = 2 \Rightarrow n^{\log_b a} = n^2; \quad f(n) = n^3. \]

Case 3: \(f(n) = \Omega(n^2 + \epsilon) \) for \(\epsilon = 1 \)
and \(4(n/2)^3 \leq cn^3 \) (reg. cond.) for \(c = 1/2. \)
\[\therefore T(n) = \Theta(n^3). \]
Examples

Ex. $T(n) = 4T(n/2) + n^3$

$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3$.

CASE 3: $f(n) = \Omega(n^2 + \varepsilon)$ for $\varepsilon = 1$

and $4(n/2)^3 \leq cn^3$ (reg. cond.) for $c = 1/2$.

$\therefore T(n) = \Theta(n^3)$.

Ex. $T(n) = 4T(n/2) + n^2/\lg n$

$a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\lg n$.

Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $n^\varepsilon = \omega(\lg n)$.