Data Structures and Algorithms
CMPSC 465

LECTURE 4
• More Asymptotic Notation

Adam Smith

S. Raskhodnikova and A. Smith; based on slides by E. Demaine and C. Leiserson
o-notation and ω-notation

O-notation and *Ω*-notation are like ≤ and ≥. *o*-notation and *ω*-notation are like < and >.

\[
o(g(n)) = \{ f(n) : \text{for any constant } c > 0, \text{ there is a constant } n_0 > 0 \text{ such that } 0 \leq f(n) < c g(n) \text{ for all } n \geq n_0 \}\]

Example: \(2n^2 = o(n^3)\) \((n_0 = 2/c)\)
o-notation and ω-notation

O-notation and $Ω$-notation are like \leq and \geq.

o-notation and $ω$-notation are like $<$ and $>$.

$$ω(g(n)) = \{ f(n) : \text{for any constant } c > 0, \text{ there is a constant } n_0 > 0 \text{ such that } 0 \leq cg(n) < f(n) \text{ for all } n \geq n_0 \}$$

Example: $\sqrt{n} = ω(lg n)$ \((n_0 = 1+1/c) \)
Summary

<table>
<thead>
<tr>
<th>Notation</th>
<th>… means …</th>
<th>Think…</th>
<th>E.g.</th>
<th>Lim (f(n)/g(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(n)=O(n))</td>
<td>(\exists c>0, n_0>0, \forall n > n_0 : 0 \leq f(n) < cg(n))</td>
<td>Upper bound “(\leq)"</td>
<td>(100n^2 = O(n^3))</td>
<td>If it exists, it is (< \infty)</td>
</tr>
<tr>
<td>(f(n)=\Omega(g(n)))</td>
<td>(\exists c>0, n_0>0, \forall n > n_0 : 0 \leq cg(n) < f(n))</td>
<td>Lower bound “(\geq)"</td>
<td>(n^{100} = \Omega(2^n))</td>
<td>If it exists, it is (> 0)</td>
</tr>
<tr>
<td>(f(n)=\Theta(g(n)))</td>
<td>both of the above: (f=\Omega(g)) and (f = O(g))</td>
<td>Tight bound “(=)"</td>
<td>(\log(n!) = \Theta(n \log n))</td>
<td>If it exists, it is (> 0) and (< \infty)</td>
</tr>
<tr>
<td>(f(n)=o(g(n)))</td>
<td>(\forall c>0, n_0>0, \forall n > n_0 : 0 \leq f(n) < cg(n))</td>
<td>“(<)"</td>
<td>(n^2 = o(2^n))</td>
<td>Limit exists, (=0)</td>
</tr>
<tr>
<td>(f(n)=\omega(g(n)))</td>
<td>(\forall c>0, n_0>0, \forall n > n_0 : 0 \leq cg(n) < f(n))</td>
<td>“(>)"</td>
<td>(n^2 = \omega(\log n))</td>
<td>Limit exists, (=\infty)</td>
</tr>
</tbody>
</table>
Common Functions: Asymptotic Bounds

- **Polynomials.** $a_0 + a_1n + \ldots + a_d n^d$ is $\Theta(n^d)$ if $a_d > 0$.

- **Polynomial time.** Running time is $O(n^d)$ for some constant d independent of the input size n.

- **Logarithms.** $\log_a n = \Theta(\log_b n)$ for all constants $a, b > 0$.

 - Can avoid specifying the base.

 - Log grows slower than every polynomial.

 For every $x > 0$, $\log n = O(n^x)$.

- **Exponentials.** For all $r > 1$ and all $d > 0$, $n^d = O(r^n)$.

- **Factorial.** $n! = (\sqrt{2\pi n}) \left(\frac{n}{e}\right)^n (1 + o(1)) = 2^{\Theta(n \log n)}$

 - Every exponential grows faster than every polynomial.

 - Grows faster than every exponential.

A. Smith; based on slides by E. Demaine, C. Leiserson, S. Raskhodnikova, K. Wayne
Properties

• Transitivity:
 – If $f = O(g)$ and $g = O(h)$ then $f = O(h)$.

• Additivity:
 – If $f = O(h)$ and $g = O(h)$ then $f + g = O(h)$.

• Multiplication:
 – If $f = O(h_1)$ and $g = O(h_2)$ then $f(n)g(n) = O(h_1(n)h_2(n))$

• Similar properties for Θ, Ω, o, ω
Exercise: Show that \(\log(n!) = \Theta(n \log n) \)

- **Upper bound:**
 \[
 \log(n!) = \sum_{i=1}^{n} \log(i) \\
 \leq n \log(n) = O(n \log n)
 \]

- **Lower bound:**
 \[
 \log(n!) = \sum_{i=1}^{n} \log(i) \\
 \geq \sum_{i=\lceil n/2 \rceil}^{n} \log(i) \\
 \geq \frac{n}{2} \log\left(\frac{n}{2}\right) \geq \frac{n}{2} \log\left(\frac{n}{2} - 1\right) \\
 = \frac{n}{2} \log\left(\frac{n}{2}(1 - \frac{n}{2})\right) \\
 = \frac{n}{2} \log(n)\left(1 - \frac{\log 2}{\log n} + \frac{\log(1 - \frac{n}{2})}{\log n}\right) \\
 = \Omega(n \log n) \cdot \Omega(1) = \Omega(n \log n)
 \]
Review questions: True/false?

1) $n^2 - 5n - 100 = O(n)$
2) $n^3 + 10n^2 + 125 = \omega(n)$
3) $n^2 + O(n) = O(n^2)$
4) $2^{n+1} = O(2^n)$
5) $2^{5n} = O(2^n)$
6) $\log(n^2) = O(\log(n))$
7) $5n - O(n) = \Omega(n)$
8) $5n - o(n) = \Omega(n)$

1) F 2) T 3) T 4) T 5) F 6) T 7) F 8) T