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Abstract—We consider the scheduling of deferrable charg-
ing demand for plug-in electric or hybrid-electric vehicles
(PEVs/PHEVs) in the smart grid such that the grid is operating
within the safety charging threshold, and as many as con-
sumers/users are satisfied by the end of a finite horizon (e.g., 8pm-
6am). Given that the charging profiles of PEVs/PHEVs are not
constant and have a (truncated) prescribed triangle shape,the
grid has to take into account such unevenness in the scheduling of
their charging process. We assume that the consumers’ charging
profiles are known at the beginning of the finite horizon, and
their charging can be interruptible. We develop an automated
discrete-time scheduling algorithm in which the grid dynamically
tracks the unevenness of each consumer’s charging profile, and
gives priority to consumers with highest unevenness that itcan
tolerate in each time period. For each consumer, the unevenness is
measured by the cumulative difference of the charging profile and
the average residual demand of his remaining charging profile
in each time period until charging completion. This schedule is
dynamic because it measures the average residual demand of each
consumer in each time period. By comparing with an alternative
scheduling algorithm that only measures the unevenness by the
average demand of each consumer from their charging profile at
the beginning, we show that the dynamic algorithm can better
avoid bustiness in the charging process of the grid and can also
satisfy much more consumers by the end of the finite horizon.
We also compare with another algorithm, the SRPT algorithm,
that gives priorities to consumers with shortest demand period,
without taking into account unevenness. We conduct simulations
to show the effectiveness of our scheduling algorithm in two
scenarios: PEV/PHEV consumers, a mixture of PEV/PHEV con-
sumers and constant-charging-profile consumers. With renewable
energy supply, we allow the safety charging threshold to be
random in each period and also conduct simulations to compare
the performance of the algorithms in the scenario with mixed
consumers.

I. I NTRODUCTION

Plug-in electric or hybrid-electric vehicles (PEVs/PHEVs),
as alternative vehicles, are recognized for their reducinggreen-
house emissions and dependence on oil import related to na-
tional security concerns, so a growing number of PEVs/PHEVs
is in need. By 2030, 6%-30% of vehicles in use will be
PEVs/PHEVs; see,e.g., [7]. Because of the increasing rate
of PEV/PHEV adoption, the battery-charging of PEVs/PHEVs
becomes a challenging question to the electric energy indus-
try. This extra burden will explode if uncontrolled, because
the time to charge most of PEVs/PHEVs, when people re-
turn home after work, coincides with the time of the peak
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of residential loads. In the context of efficient, robust and
adaptive systems for electricity consumption, distribution and
supply (i.e., smart grids), home energy servers have been
conceived to aid the individual residential consumer/user[15].
Though recent studies have shown that residential electricity
consumption is generally not readily responsive to prices
[15], perhaps the home energy servers will become more
important in the future as it manages (on behalf of the
typically sleeping consumer) the substantial overnight load
due to charging of PEVs/PHEVs. Note that the collective
capacity of PEVs/PHEVs may be ideally suited to exploit
renewable wind energy supply which is often most plentiful
at night; though wind energy is variable, it is short term
predictable [2], [8]. Though our focus herein isautomated
charging of electric PEV/PHEV batteries in the early morning
hours (a considerable collective load at a time-of-day when
energy demands are presently least), we acknowledge that
some PEV/PHEV battery charging may take place during the
day at, say, specially equipped parking lots or, to a limited
extent, by solar cell on the roof of the vehicle.

In classical scheduling problems, jobs are typically assumed
to be independently and identically distributed in size and
duration, and arrive according to a prescribed stochastic,
e.g., Poisson process. Jobs are also typically not interruptible
and constrained by limits on their sojourn times (queuing
plus processing delays) in the system. Recently, scheduling
problems for “smart” electrical grids have been given consid-
erable attention by researchers. These problems typicallyfall
into two broad categories: a centralized one where the grid
itself largely controls the schedule of demand disclosed bythe
consumers, and a decentralized one where the grid only signals
the consumers regarding the current spot price of power and
the consumers decide their demand schedule. In this paper, we
largely focus on a centralized problem setting for interruptible
demand (typically as PEV/PHEV battery charging) with a
collective finite time-horizon for charging (the start of the
morning commute).

A. Related Work

In [11], a day-ahead pricing strategy is set forth to move
demand to off-peak hours. Their framework considers users’
willingness to shift their demand and their numerical experi-
ments are based on data from Ontario Hydro. However, studies
have questioned the extent to which consumer behaviors can
be thus manipulated by pricing [15].
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In [19], a scheduling of interruptible and deferrable electric
loads with renewable supplies is considered. All charging
tasks have constant charging rates and individual deadlines.
It is proved that no casual optimal scheduling policies exist
and three coordinated algorithms (EDF, LLF, RHC) are com-
pared through simulation-based tests. As electrical vehicles
have different charging rates in different charging levelsas
mentioned in [1], in our paper, we focus on the scheduling
of PEVs/PHEVs with unimodal peakedness charging profiles
and there is a collective deadline for all consumers. From
the current/voltage graph in [17] for LI-ion batteries [5],it
should be noticed that the current is flat to a point and then
diminishes; before that point, the voltage increases and then
is flat afterwards; we deal with the resulting unimodal power-
charging profile in the following.

One main feature of our paper is that charging is allowed to
be both deferrable and interruptible. There are several papers
on noninterruptible charging in the smart grid. In [4], an
incentive-based energy consumption scheduling algorithmis
proposed for the smart grid with consumers of noninterrupt-
ible constant demand profiles. In [13], such noninterruptible
load/demand is considered in greater detail: consumer demand
is assumed to arrive according to a Poisson process, is of
constant power, and may be deferred up to an exponentially
distributed service deadline (per consumer). Their objective
is a long-term average cost function of instantaneous power
consumed. Noninterruptible demand is also considered in [16],
but there Poisson arrivals are due to an assumed mechanism to
desynchronize demand (not the subject of policy optimization),
the power profile is assumed unimodal, again consistent with
that of the batteries of certain PEV/PHEV batteries [5], [17],
[18], and all demand was assumed “available” at the start
of a finite (e.g., overnight) charging interval; demand was
incrementally deferred to avoid overages. Specifically which
consumers were deferred at a given time could be ascertained
using a heuristic scoring system as for example given in [4].

In [4], [19], the focus is also on real-time scheduling of the
power demand (tasks, jobs) of different consumers. Heuristic
rules are given to prioritize consumers,e.g., the “deferrable
deadline” priority rule and scheduling via receding horizon
control of an objective function inspired by (single) processor
time allocation1 in [19]. In [22], a “quality of experience”
measure of power consumption is used in a collective objective
function whose optimization is the aim of a consumer demand
schedule.

In [20], a “network calculus” queuing model [3] is adapted
to a broadly scoped power generation, distribution and demand
system, including a somewhat aggregated model of consumer
demand. The scheduling criterion we use in the following
is related to the notion of “burstiness curve” of the network
calculus literature.

B. Problem setting

In summary, we assume deferrable and interruptible demand
of non-constant power profile, where all demand is available
at the start of a charging period and must be completed over

1For which a common scheduling approach is simple earliest deadline first.

a finite time-horizon (T ), specifically modeling the task of
charging PEV/PHEV batteries overnight. Instead of assuming
that the grid signals spot prices to the consumers (based on
a combination of current (real-time) demand and historical
(e.g., day ahead) demand), we assume that the consumers
signal the grid (their demand aggregator, in particular) with
their required charging profile2. A consumer’s PHEV/PEV
battery is connected to a circuit controlled by the grid3. We
assume a fixed power budget (L) for a given community of
consumers, instantaneous consumption above which is subject
to overage charges (which are to be avoided if possible); The
grid’s task is then to schedule demand to avoid overages and
to minimize the total unfulfilled charging by the end of the
charging interval.

The presumption here is that this framework for PHEV/PEV
battery charging will be cheaper for the consumer, compared
to simply plugging their car into a circuit not controlled by
the grid which results in charging that begins immediately (not
deferred) and is not interrupted. These specific charging rates
and the overage thresholdL are assumed to be informed by
historical demand data and current prices of supply for the
grid servicing the population of consumers considered in the
following.

C. Organization of the paper

This paper is organized as follows. In Section II, we describe
a rule by which the grid can prioritize consumers so as to most
likely meet all of their PEV/PHEV charging demands by the
collective deadline. A summary of alternative approaches is
given in Section III. A comparative numerical study is given
in Section IV. We conclude in Section V with a summary.

II. SCHEDULING BY CHARGING PROFILE UNEVENNESS

A. PEV Demand Profile

In [16], we studied PEV/PHEV demand profiles of unimodal
type [5], [17], [18], an idealization of which is shown in Fig.
1. The power charging rate is approximated by a triangle-pulse
function,h(t), starting at time 0 with supportη > ζ and peak
value H at time ζ; see the top graph of Fig. 1. Theh(t)
function has the following explicit expression

h(t; η,H, ζ) =

{

H
ζ
t, 0 ≤ t < ζ,

− H
η−ζ

t+ Hη
η−ζ

, ζ ≤ t ≤ η.
(1)

With the help of Lithium-ion chemistry [5], batteries have no
memory effect and can be recharged even when they are not
discharged completely [9]. Thus, the power demand profile of
a given smart grid PEV consumer at a given night may start
with an arbitrary residual charge, and thus take the shape of
the front-clipped (advanced) triangle pulse at the bottom of
Fig. 1, i.e.,

h(t+ ξ; η,H, ζ)u(t),

2In future work, we will consider the issue of the reliabilityof consumer
attestation of demand for real-time and historically basedpricing [10], [12],
[14] for this setting.

3Such arrangements exist today for high-power applicances,particularly
electric heaters and air conditioners, allowing the grid tobriefly cycle power
to these circuits in order to “peak-shave” demand.
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Fig. 1. Idealized PEV Battery Power Demand Charging Profile

whereu is Heaviside’s unit-step function andξ > 0 is the time
corresponding to the amount of residual chargeα = h(ξ). So,
the PEV power consumption profile of theith residential smart
grid consumer is here parameterized by(τi, ξi, ηi, Hi, ζi),
whereτi is the starting time of service request,i.e.,

g(t; τi, ξi, ηi, Hi, ζi) = h(t+ ξi − τi; ηi, Hi, ζi)u(t− τi).

B. The Scheduling Algorithm

We consider a finite, discretized time-interval of lengthT
time-units, I := {1, 2, ..., T }, and all consumer loads are
“available” at the start of the interval and must be completed
by the end. Suppose theith consumer has a PEV/PHEV
battery with required charging profilegi(1), gi(1), ..., gi(ηi)
Joules/time-unit. The scheduled service times of theith con-
sumer are indicated by the processsi(t), t ∈ I (cf. the
definition of S below). The mean power demand of theith

consumer is̄gi(1) := η−1
i

∑ηi

k=1 gi(k).
We naturally assume a consumer will be charged in part

according to their total energy consumption (ḡ, η), equivalently
according to their mean power consumption (ḡ) over the length
of their period of consumption (η). In addition, a consumer’s
charges may increase as a function of the degree of unevenness
(burstiness) of useri’s charging; this can be defined as

σi(t) = max
−1≤ρ≤ri(t)−1

si(t)+ρ
∑

k=si(t)

[gi(k)− ḡi(si(t))] (2)

= max
−1≤ρ≤ri(t)−1





si(t)+ρ
∑

k=si(t)

gi(k) − (ρ+ 1)ḡi(si(t))



 (3)

= max







0, max
0≤ρ≤ri(t)−1

si(t)+ρ
∑

k=si(t)

gi(k) − (ρ+ 1)ḡi(si(t))







where:
∑s−1

k=s x(k) ≡ 0 for all s and summandsx (soσi(t) ≥

0 ∀i, t), gi(k) = 0 ∀k > ηi,

ḡi(si(t)) :=
1

ri(t)

ηi
∑

k=si(t)

gi(k),

ri(t) := ηi − si(t) + 1.

Let S(t) be the set of users chosen for service at discrete-
time t ∈ {1, 2, ..., T }. If i ∈ S(t), thensi(t+ 1) = si(t) + 1
andri(t+ 1) = ri(t)− 1.

Clearly, for feasible scheduling of all user demand without
overages, we require that

TL ≥
∑

i∈U

ηiḡi(1), (4)

whereU is the set of consumers/users, and

ri(1) = ηi and si(1) = 1 ∀i ∈ U .

Of course, (4) might not suffice for schedulability.

Assuming (4), we propose to schedule by priority based on
residual demand-unevennessσi with ties broken by either
the maximum of residual mean power demandḡi(si) or the
maximum charging demandgmax

i (si), wheregmax
i (si(t)) =

maxsi(t)≤k≤ηi, i∈U{gi(k)}. That is, for allt, S(t) satisfies:
•

∑

i∈S(t) gi(si(t)) ≤ L,
• for all j 6∈ S(t),

– σj(t) ≤ mini∈S(t) σi(t),
– if σj(t) = σi(t) for somei ∈ S(t), either

(M1) : ḡj(sj(t)) ≤ ḡi(si(t)),

or

(M2) : gmax
j (sj(t)) ≤ gmax

i (si(t)).

C. Measure of Total Unevenness

As a measure of total residual work difficulty, define

B(t) :=
∑

i∈U

σi(t).

First note that ifi ∈ S(t), then

ḡi(si(t)) =
ri(t)− 1

ri(t)
ḡi(si(t+ 1)) +

1

ri(t)
gi(si(t)), (5)

where, again,ri(t+1) = ri(t)− 1 andsi(t+ 1) = si(t) + 1.
So,

σi(t) = max
{

0, gi(si(t)) − ḡi(si(t))

+ max
−1≤ρ′≤ri(t+1)−1

si(t+1)+ρ′

∑

k=si(t+1)

[gi(k)− ḡi(si(t))]
}

,

where the “0” term corresponds toρ = −1 in (2) and we have
substitutedρ′ = ρ− 1. By (5), if i ∈ S(t), then

σi(t) ≥ max

{

0,
2

ri(t)
gi(si(t))− ḡi(si(t)) + σi(t+ 1)

}

; (6)

otherwise,σi(t+1) = σi(t). If the relation in (6) was equality,
this would be a Lindley recursion (as describing the dynamics
of a queue’s backlog, [21]). Clearly by (6),

B(t+ 1) ≤ B̃(t+ 1), (7)
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where the upper bound

B̃(t+ 1) := B(t)−
∑

i∈S(t)

[

2

ri(t)
gi(si(t))− ḡi(si(t))

]

.

We can relax the lower bound in (6) further by the following

σi(t) ≥ max

{

0,
2

η̄
gi(si(t))− ḡi(si(t)) + σi(t+ 1)

}

, (8)

whereη̄ := maxi ηi. Thus, if
∑

i∈S(t)

gi(si(t)) ≈ L, (9)

i.e., assuming sufficient demand and a large user population
so thatgi(k) ≪ L for all i, k, then (7) becomes

B(t+ 1) ≤ B̂(t+ 1), (10)

where the upper bound

B̂(t+ 1) := B(t)−
2

η̄
L+

∑

i∈S(t)

ḡi(si(t)).

So, we have shown:

Theorem 2.1:If at time t:

• σi(t) are given for alli ∈ U ,
• (9) holds, and
• scheduling byσi priority, with ties broken bȳgi(si),

then B̂(t+ 1) is (obviously) minimized with

B̂(t+ 1) ≥ B(t+ 1).

Note that it’s also possible to chooseS(t) so as to directly
minimize B(t + 1); but this requires a large combinatorial
search that is greatly simplified by a priority rule. We also
note that the measureB(t) remains the same for the two
methodsM1 andM2, and so do the two upper bounds̃B(t)
andB̂(t). Finally note that this scheduling criterion is similar
to the “service curve” [3].

III. A LTERNATIVE SCHEDULING CRITERIA

We now introduce two alternative scheduling methods. First,
different variations of (2) are readily considered,e.g., by sim-
ply replacing the residual mean power requirementḡi(si(t))
with the initial mean power requirement spread out over the
whole charging intervalei := ηiḡi(1)/T . Thus, we have

σi(t) = max
−1≤ρ≤ri(t)−1

si(t)+ρ
∑

k=si(t)

[gi(k)− ei] (11)

= max







0, max
0≤ρ≤ri(t)−1

si(t)+ρ
∑

k=si(t)

gi(k) − (ρ+ 1)ei







This leads to an exact Lindley recursion forσi when i is
scheduled,

σi(t) = max {0, gi(si(t)) − ei + σi(t+ 1)} .

Similar to (M1) and(M2), we use the scheduling approach
in Section II by priority based on residual demand unevenness
σi with ties broken by either the average of total demandei
or the maximum charging demandgmax

i (si). That is to say, if
σj(t) = σi(t) for somei ∈ S(t) and for allj 6∈ S(t), either

(M3) : ej ≤ ei,

or

(M4) : gmax
j (sj(t)) ≤ gmax

i (si(t)).

We next introduce a scheduling method that simply gives
priority to consumers with the shortest remaining processing
(demand) time (SRPT) at each scheduling time slot, without
taking into account the demand profile unevenness. That is,
for all t, S(t) satisfies:

•
∑

i∈S(t) gi(si(t)) ≤ L,
• for all j 6∈ S(t),

– maxi∈S(t) ri(t) ≤ rj(t),
– if rj(t) = ri(t) for some i ∈ S(t), we randomly

choose either customeri or j.

IV. N UMERICAL RESULTS

We now present results of numerical experiments to illus-
trate the performance of our scheduling algorithm in Section
II and compare with the two alternative scheduling algorithms
in Section III.

A. Only PEV/PHEV Consumers

First, an input data set of consumer demand charging
profiles as in Fig. 1 was generated according to the follow-
ing random mechanism. We choseN = 1000, T = 480
minutes, H ∼ Uniform(50, 100), η ∼ Uniform(60, 120),
ζ|η ∼ Uniform(0, η) and ξ|ζ ∼ Uniform(0, ζ). For this
particular data set, the critical value ofL in (4) is given by
L = 5986.

We implemented the three scheduling algorithms for this
consumer demand portfolio data set. We next show the per-
formance of our algorithm of Section II. Fig. 2 depicts the total
unevenness measureB(t) and its two upper bounds̃B(t) and
B̂(t). We see that the two upper bounds are both very tight4.

In Fig. 3, we compare the total unevenness measureB(t) of
our scheduling algorithm in Section II with the first alternative
scheduling algorithm (M3) in Section III. It is evident that
the total unevenness measureB(t) of our algorithm is much
smaller than that of the alternative one. This shows that our
algorithm is very effective in reducing the unevenness by
taking into account the progressive peakedness in the future
at each time instead of simply using the peakedness measure
over the entire demand period.

It is clear that our scheduling algorithm is not work-
conserving, that is, some residual supply may not be utilized
at some time. This may be desirable in order to avoid demand
overages. We compare the residual supply (headroom room
to the overage thresholdL) at each time of our scheduling
algorithm with that of the alternative algorithms. LetX(t) =

4Note that the plot shows the results for theM1 method, but as we have
noted, methodsM1 andM2 give the same schedule.
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Fig. 2. Comparison ofB(t), B̃(t) andB̂(t) under scheduling using profile
unevenness (Schedule1).
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Fig. 3. Comparison ofB(t) under Schedule1 and Schedule2.

∑

i∈S(t) gi(si(t)) be the amount of energy that are consumed
at time t. The headroomR(t) = L − X(t) at each timet
is depicted in Fig. 4. From these plots, we see that all these
algorithms result in some residual supply most of the time.
The headroom under our scheduling algorithm shows a clear
decreasing trend in Fig. 4 (a) and (b). We observe a similar but
less clear trend in our second scheduling algorithm; see Fig.
4 (c) and (d). However, the SRPT algorithm does not seem
to have this feature, as shown in Fig. 4 (e). Note that after
a given point in time (T0), the headroomR(t) may become
large enough to exceed the maximum value of any consumer’s
charging profile, see Fig. 4 (a), (b) and (e), while such a
phenomenon is absent in Fig. 4 (c) and (d). This is because
not many consumers are remaining in the system after that
point in time under our “Schedule 1” (Section II) or SRPT
algorithms, consumer demand needs to be satisfied in order
of the demand charging profile, and not-completely satisfied
consumers remained at the end of the charging intervalT
under “Schedule 2” (Section III) algorithms; see the following
tables.
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(c) Schedule 2, M3
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(d) Schedule 2, M4
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(e) SRPT

Fig. 4. The headroomR(t) = L − X(t) (a) for M1, (b) for M2, (c) for
M3, (d) for M4 and (e) for SRPT.

In addition, we used the following three performance mea-
sures (P.M.) to compare these scheduling algorithms:

1) The average headroom to the threshold,

V1 :=
1

T0

T0
∑

t=1

R(t) =
1

T0

T0
∑

t=1

(L−X(t));

whereT0 is the last time when the headroomR(t) is
less or equal to the maximum value of any consumer’s
charging profile. In the above numerical example,T0 =
sup{t ≥ 1 : (L−X(t)) ≤ 100}, where 100 is the upper
bound of the charging profile of all consumers.

2) The total residual demand,

V2 :=
∑

i∈U

ri(T )ḡi(si(T ));

3) The number of consumers who do not finish their service
at timeT (i.e., are not completely satisifed),

V3 :=
∑

i∈U

1{si(T ) ≤ ηi},

where1 is an indicator function:1{A} = 1 when the event
A occurs and1{A} = 0 otherwise.

These three performance measures were evaluated and
are given in Table I. First, observe that the two methods
of Schedule 1 gave similar performance, and similarly the
two methods of Schedule 2. All approaches gave relatively
small V1, implying that the utilizations under all scheduling
algorithms were relatively high. Schedule 1 performed better
than SRPT, with less total residual demand and fewer not
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completely satisfied consumers, and Schedule 1 outperformed
Schedule 2 in terms of not completely satisfied consumers,
even though the total residual demand under Schedule 2 was
smaller than that under Schedule 1.

P.M.
Schedule 1 Schedule 2

SRPT
M1 M2 M3 M4

V1 26.9100 26.9100 28.7538 28.7538 24.8821
V2 57874.79 57874.79 13789.52 13789.52 68153.58
V3 35 35 800 800 86

TABLE I
COMPARISON OF PERFORMANCE MEASURES FOR THE SCHEDULING

ALGORITHMS.

B. Two Types of Consumers

A demand aggregator may also have to deal with flexible
loads which have a constant charging rateHc, such as air
conditioners, electric heaters, and washing machines. To check
how our algorithms perform under a mixture of these two types
of consumers, we also generated a second type of consumer
with Hc = 50 and the charging timeη ∼ Uniform(60, 120).
These two types of consumers were in equal proportion. The
number of not completely satisfied consumers for the first type
and the second type are respectively denotedV

(1)
3 andV

(2)
3 .

An input data set of consumer demand charging profiles was
generated and we choseL = 7641 as before for the data set.

Numerical results, given in Table II, again show that the
two methodsM1 and M2 of Schedule 1 had approximately
the same performance measures, and similarly for the two
methodsM3 and M4 of Schedule 2. For the measures of
V1 and V2, Schedule 1 outperformed SRPT; in particular,
Schedule 1 finished all PEV consumers’ charging requirement
while SRPT had nine not completely satisfied PEV consumers,
which verifies that our algorithm gives priority to consumers
with uneven demand profiles. We also observe that Schedule
2 had a large amount of not completely satisfied consumers
even though the total residual demand was smaller than that
under Schedule 1.

P.M.
Schedule 1 Schedule 2

SRPT
M1 M2 M3 M4

V1 31.3366 31.3425 25.4380 25.4380 25.5803
V2 98950.00 98950.00 16541.09 16541.09 122430.54

V
(1)
3 0 0 422 422 9

V
(2)
3 74 74 0 0 74

TABLE II
COMPARISON OF PERFORMANCE MEASURES FOR THE SCHEDULING

ALGORITHMS.

C. Two Types of Consumers with Renewable Power Supply

Renewable energy is playing an increasingly important role
in supplying power to consumers. Solar and wind [2] constitute
2% of the electricity generated in the US in 2009, and it is
expected that 30% of total electricity supply will come from
renewables by 2030 [6].

Assuming that a proportion of the grid’s power comes from
the renewable energy, the overage thresholdL is now time-
varying:L = L̄∗+L0, whereL̄∗ is the grid’s (constant) over-
age threshold from the conventional supply, andL0 represents
renewable supply process assumed to be Gaussian distributed
with i.i.d. marginalsL0 ∼ N(µ0, σ

2
0). Using the same data

set of consumers’ demand-profiles as in Section IV-B, we get
L∗ = 7640.31 from (4). We chosēL∗ = 0.9L∗ = 6876.28,
µ0 = 0.1L∗ = 764.03 andσ0 = 0.2µ0 = 152.81.

The numerical results are given in Table III. Again, we
see that the two methodsM1 and M2 of Schedule 1 had
approximately the same performance measures, and similarly
for the two methodsM3 and M4 in Schedule 2. Schedule
1 outperforms SRPT. In particular, Schedule 1 had finished
all PEV/PHEV consumers’ charging requirement, while SRPT
had nine not completely satisfied PEV/PHEV consumers.
Renewable energy, as the supplementary supply of the power
to the smart grid, indeed enhanced the performance of all
approaches: compare total residual demand in Table II and
Table III. It is also observed that, even though the total residual
demand under Schedule 2 is smaller than that under Schedule
1, there are still more not completely satisfied consumers under
Schedule 2 than that under Schedule 1.

P.M.
Schedule 1 Schedule 2

SRPT
M1 M2 M3 M4

V1 24.3625 24.3334 27.7019 27.7019 25.7367
V2 91700.00 91800.00 13024.99 13024.99 118734.47

V
(1)
3 0 0 390 390 9

V
(2)
3 72 71 0 0 74

TABLE III
COMPARISON OF PERFORMANCE MEASURES FOR THE SCHEDULING

ALGORITHMS.

V. CONCLUSIONS

We considered the scheduling of deferrable and inter-
ruptible PEV/PHEV battery-charging load in a smart grid
for two scenarios: only PEV/PHEV consumers, and a mix-
ture of PEV/PHEV consumers and constant-charging-profile
consumers. By numerical experiments, we showed how our
proposed automated scheduling algorithm (Schedule 1) can
satisfy much more consumers compared to other alterna-
tive approaches in both cases. Since SRPT only focuses
on the remaining charging time without considering peaked-
ness/unevenness of each consumer’s charging profile, it per-
formed worst in the sense that both the total unfulfilled demand
and the number of not completely satisfied consumers (at the
end of the charging period). Although the alternative Schedule
2 can reduce the total residual demand efficiently, there are
still many not completely satisfied consumers, especially in
the case of only PEV/PHEV consumers. With a supply of
renewable energy, Schedule 1 is also shown to significantly
decrease the number of not completely satisfied consumers.
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