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Abstract—We consider the scheduling of deferrable charg-
ing demand for plug-in electric or hybrid-electric vehicles
(PEVS/PHEVS) in the smart grid such that the grid is operatirng
within the safety charging threshold, and as many as con-
sumers/users are satisfied by the end of a finite horizore@., 8pm-
6am). Given that the charging profiles of PEVs/PHEVs are not
constant and have a (truncated) prescribed triangle shapethe
grid has to take into account such unevenness in the scheduogj of
their charging process. We assume that the consumers’ chargy
profiles are known at the beginning of the finite horizon, and
their charging can be interruptible. We develop an automatel
discrete-time scheduling algorithm in which the grid dynamically
tracks the unevenness of each consumer’s charging profilend
gives priority to consumers with highest unevenness that itan
tolerate in each time period. For each consumer, the unevemss is
measured by the cumulative difference of the charging profé and
the average residual demand of his remaining charging profé
in each time period until charging completion. This schedu# is
dynamic because it measures the average residual demand afod
consumer in each time period. By comparing with an alternatve
scheduling algorithm that only measures the unevenness byé
average demand of each consumer from their charging profileta
the beginning, we show that the dynamic algorithm can better
avoid bustiness in the charging process of the grid and can sb
satisfy much more consumers by the end of the finite horizon.
We also compare with another algorithm, the SRPT algorithm,
that gives priorities to consumers with shortest demand peod,
without taking into account unevenness. We conduct simulans
to show the effectiveness of our scheduling algorithm in two
scenarios: PEV/PHEV consumers, a mixture of PEV/PHEV con-
sumers and constant-charging-profile consumers. With rengable
energy supply, we allow the safety charging threshold to be
random in each period and also conduct simulations to compar
the performance of the algorithms in the scenario with mixed
consumers.

I. INTRODUCTION

Plug-in electric or hybrid-electric vehicles (PEVs/PHEVs
as alternative vehicles, are recognized for their redugnegn-

house emissions and dependence on oil import related to H
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of residential loads. In the context of efficient, robust and
adaptive systems for electricity consumption, distribatand
supply (.e., smart grids), home energy servers have been
conceived to aid the individual residential consumer/(&8}.
Though recent studies have shown that residential elégtric
consumption is generally not readily responsive to prices
[15], perhaps the home energy servers will become more
important in the future as it manages (on behalf of the
typically sleeping consumer) the substantial overniglatdlo
due to charging of PEVs/PHEVs. Note that the collective
capacity of PEVs/PHEVs may be ideally suited to exploit
renewable wind energy supply which is often most plentiful
at night; though wind energy is variable, it is short term
predictable [2], [8]. Though our focus herein &@itomated
charging of electric PEV/PHEV batteries in the early mognin
hours (a considerable collective load at a time-of-day when
energy demands are presently least), we acknowledge that
some PEV/PHEYV battery charging may take place during the
day at, say, specially equipped parking lots or, to a limited
extent, by solar cell on the roof of the vehicle.

In classical scheduling problems, jobs are typically assdim
to be independently and identically distributed in size and
duration, and arrive according to a prescribed stochastic,
e.g, Poisson process. Jobs are also typically not interruptibl
and constrained by limits on their sojourn times (queuing
plus processing delays) in the system. Recently, scheglulin
problems for “smart” electrical grids have been given cdnsi
erable attention by researchers. These problems typitally
into two broad categories: a centralized one where the grid
itself largely controls the schedule of demand disclosethby
consumers, and a decentralized one where the grid onlylsigna
the consumers regarding the current spot price of power and
the consumers decide their demand schedule. In this paper, w
largely focus on a centralized problem setting for intetihlp
g[nand (typically as PEV/PHEV battery charging) with a

tional security concerns, so a growing number of PEVs/PHE\?Q"eC_:tiVe finite time-horizon for charging (the start ofeth
is in need. By 2030, 6%-30% of vehicles in use will pdnorning commute).

PEVs/PHEVs; seee.g, [7]. Because of the increasing rate,

. Related Work

of PEV/PHEV adoption, the battery-charging of PEVs/PHEVs

becomes a challenging question to the electric energy indus
try. This extra burden will explode if uncontrolled, becaus

In [11], a day-ahead pricing strategy is set forth to move
demand to off-peak hours. Their framework considers users’

the time to charge most of PEVS/PHEVS, when people pwillingness to shift their demand and their numerical exper

turn home after work, coincides with the time of the pea
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pents are based on data from Ontario Hydro. However, studies
have questioned the extent to which consumer behaviors can
be thus manipulated by pricing [15].



In [19], a scheduling of interruptible and deferrable dliect a finite time-horizon T'), specifically modeling the task of
loads with renewable supplies is considered. All chargirdharging PEV/PHEV batteries overnight. Instead of assgmin
tasks have constant charging rates and individual deadlinthat the grid signals spot prices to the consumers (based on
It is proved that no casual optimal scheduling policies texia combination of current (real-time) demand and historical
and three coordinated algorithms (EDF, LLF, RHC) are confe.g, day ahead) demand), we assume that the consumers
pared through simulation-based tests. As electrical Vehicsignal the grid (their demand aggregator, in particulathwi
have different charging rates in different charging levass their required charging proffe A consumer's PHEV/PEV
mentioned in [1], in our paper, we focus on the schedulirgpttery is connected to a circuit controlled by the gridve
of PEVs/PHEVs with unimodal peakedness charging profilessume a fixed power budget)(for a given community of
and there is a collective deadline for all consumers. Frooonsumers, instantaneous consumption above which isciubje
the current/voltage graph in [17] for Ll-ion batteries [%], to overage charges (which are to be avoided if possible); The
should be noticed that the current is flat to a point and thenid’s task is then to schedule demand to avoid overages and
diminishes; before that point, the voltage increases ard thto minimize the total unfulfilled charging by the end of the
is flat afterwards; we deal with the resulting unimodal pewecharging interval.
charging profile in the following. The presumption here is that this framework for PHEV/PEV

One main feature of our paper is that charging is allowed battery charging will be cheaper for the consumer, compared
be both deferrable and interruptible. There are severagnsapto simply plugging their car into a circuit not controlled by
on noninterruptible charging in the smart grid. In [4], ahe grid which results in charging that begins immediatalyt (
incentive-based energy consumption scheduling algorithimdeferred) and is not interrupted. These specific chargitesra
proposed for the smart grid with consumers of noninterrupnd the overage threshold are assumed to be informed by
ible constant demand profiles. In [13], such noninterrdetibhistorical demand data and current prices of supply for the
load/demand is considered in greater detail: consumer de@marid servicing the population of consumers considered & th
is assumed to arrive according to a Poisson process, isfafowing.
constant power, and may be deferred up to an exponentially
distributed service deadline (per consumer). Their olject C. Organization of the paper

is a long-term average _COSt function_ of instantqneous POWEHr s paper is organized as follows. In Section Il, we degcrib
consumed. Noninterruptible demand is also considereda [1 yje py which the grid can prioritize consumers so as to most
but there Poisson arrivals are due to an assumed mechamsrﬁkg?y meet all of their PEV/PHEV charging demands by the
desynchronize demand (not the subject of policy optimigli ¢ |iective deadline. A summary of alternative approactses i

the power profile is assumed unimodal, again consistent Wiy, in Section Iil. A comparative numerical study is given
that of the batteries of certain PEV/PHEV batteries [5]][17;, saction IV. We conclude in Section V with a summary.

[18], and all demand was assumed “available” at the start

of a finite .9, overnight) charging interval; demand was || ScHEDULING BY CHARGING PROFILE UNEVENNESS
incrementally deferred to avoid overages. SpeC|f|caIIy0hh|.A. PEV Demand Profile

consumers were deferred at a given time could be ascertained ) _ )

using a heuristic scoring system as for example given in [4]. In [16], we studied PEV/PHEV demand profiles of unimodal

In [4], [19], the focus is also on real-time scheduling of th&/Pe [5], [17], [18], an idealization of which is shown in Fig
power demand (tasks, jobs) of different consumers. Héarist- The power charging rate is approximated by a triangleepul
rules are given to prioritize consumesg, the “deferrable function,x(t), starting at time 0 with support > ¢ and peak
deadline” priority rule and scheduling via receding horizovalue H at time ¢; see the top graph of Fig. 1. The(t)
control of an objective function inspired by (single) preser function has the following explicit expression

time allocatiodt in [19]. In [22], a “quality of experience” Hy 0<t<(
. . . . . . . . C ) —_ )
measure of power consumption is used in a collective objecti h(t;n, H,Q) = o, Hy e 1)
function whose optimization is the aim of a consumer demand “acttame C(St=m
schedule. With the help of Lithium-ion chemistry [5], batteries have n

In [20], a “network calculus” queuing model [3] is adaptednemory effect and can be recharged even when they are not
to a broadly scoped power generation, distribution and a@eimadischarged completely [9]. Thus, the power demand profile of
system, including a somewhat aggregated model of consuraegiven smart grid PEV consumer at a given night may start
demand. The scheduling criterion we use in the followingith an arbitrary residual charge, and thus take the shape of
is related to the notion of “burstiness curve” of the networthe front-clipped (advanced) triangle pulse at the bottdm o
calculus literature. Fig. 1,i.e,

B. Problem setting h(t + &n, H, Qu(t),

In summary, we assume deferrable and interruptib|e demanan future work, we will consider the issue of the reliabiliof consumer

. . . estation of demand for real-time and historically baggding [10], [12],
of non-constant power profile, where all demand is availa ] for this setting.

at the start of a charging period and must be completed oVe¥such arrangements exist today for high-power applicanpesicularly
electric heaters and air conditioners, allowing the gridtiefly cycle power
1For which a common scheduling approach is simple earliesdlifes first.  to these circuits in order to “peak-shave” demand.



0 Vi, t), gi(k) =0 Yk > n;,
1 i
gi(si(t)) = T > gilk),
N k=si(t)
ri(t) = m—si(t)+ 1.

Let S(t) be the set of users chosen for service at discrete-
timet e {1,2,...,T}. If i € S(t), thens;(t + 1) = s;(¢t) + 1
and’l’i(t + 1) = Tz(t) — 1.

Clearly, for feasible scheduling of all user demand without

lti=h{t+£} uit+£}

HI "7 overages, we require that
TL > ngi(l)a (4)
icu
t ,
T N wherel{ is the set of consumers/users, and

Tz(l) =" and 81(1) =1 Viel.

Fig. 1. Idealized PEV Battery Power Demand Charging Profile Of course (4) might not suffice for schedulability

. o _ _ . _ Assuming (4), we propose to schedule by priority based on
whereu is Heaviside’s unit-step function agd> 0 is the time  residual demand-unevenness with ties broken by either

corresponding to the amount of residual chasge 1(¢). So, the maximum of residual mean power demapn(k;) or the
the PEV power consumption profile of th& residential smart maximum charging demang<(s;), where g*®*(s;(t)) =

2

grid consumer is here parameterized by, &, i Hi, Gi)y  maxg, (<p<y, iculgi(k)}. Thatis, for allt, S(t) satisfies:

wherer; is the starting time of service request,, . Zies(t) gi(si(t)) < L,
o forall j & S(t),
g(ta Tiy g’ia Tis H’iv C’L) = h(t + 51 — Tis My H’iv C’L)u(t - T’i)' - 0y (t) S minies(t) O'i(t),

— if 0,(t) = 0y(t) for somei € S(t), either
(M1) = g;(s;(2)) < gi(si(t)),

or

B. The Scheduling Algorithm

We consider a finite, discretized time-interval of lendth (M2) : g (s, (1)) < g™ (si(t)).
time-units,Z := {1,2,...,7}, and all consumer loads are ' '
“available” at the start of the interval and must be completac. Measure of Total Unevenness
by the er_ld. Suppose théh_ consumer has a PEVIPHEV s 5 measure of total residual work difficulty,
battery with required charging profilg;(1), g:(1), ..., gi(n:)

define

Joules/time-unit. The scheduled service times ofithecon- B(t) := Z oi(t).
sumer are indicated by the procesgt), t € Z (cf. the ieu
definition of S below). The mean power demand of ti& First note that ifi € S(t), then
consumer igg; (1) == n; ' Y72, gi(k). ro(t) — 1

We naturally assume a consumer will be charged in partgi(si(t)) = ————gi(si(t + 1)) + ! gi(si(t)),  (5)
according to their total energy consumptign+f), equivalently ri(t) ri(t)
according to their mean power consumptighgver the length Where, againy;(t +1) = r;(t) — 1 ands;(t + 1) = s;(t) + 1.
of their period of consumptiony}. In addition, a consumer’s SO,
charg_es may increase as a fun.cno_n of the degre_ze of unev@nnes o4(t) = max {07 gi(5:(6)) — Gi(ss(1))
(burstiness) of usef's charging; this can be defined as

si(t+1)+p
+ max i k) — gi(s; t y
si(t)+p C1<p <y (t41) 1 k_§+1) [9:(k) — gi(si( ))]}
oi(t) = max > lgilk) = gilsi(1))] ) , :
—igpsri(n=1, L= where the 0” term corresponds tp = —1 in (2) and we have
e () substitutedy’ = p — 1. By (5), if i € S(¢), then
= i(k) — 1)gi(sqi(t 3
P (g;(t)g( )l Dot ))> ® ) Zmax{o, T%gi(si(t)) —gi(si(t))—i—ai(t—i—l)}; (6)
si(t)+p . . . .
_ otherwiseg;(t+1) = o;(t). If the relation in (6) was equality,
= 0 (k) — 1)gi(si(t . . . Y .
max{ ’ospsri?{t)flk;t)g (k) = (pF Dgilsi( ))} this would be a Lindley recursion (as describing the dynamic

of a queue’s backlog, [21]). Clearly by (6),
wherezzz;i x(k) = 0 for all s and summands (soo;(t) > B(t+1) < B(t+1), (7)



where the upper bound Similar to (M1) and(M2), we use the scheduling approach

~ 9 in Section Il by priority based on residual demand unevesines
B(t+1):= B(t) — Z {—gi(si(t)) - gi(si(t))} . o; with ties broken by either the average of total demand
i€S(t) rit) or the maximum charging demamt®*(s;). That is to say, if

We can relax the lower bound in (6) further by the followingj (t) = 03(t) for somei € S(t) and for allj ¢ 5(t), either

2 (M3) L €5 < €,
1(6) 2 max {0, Z0i(s(0) - ai(s(0) 4ot + D | ® o
wherei) := max; ;. Thus, if (M4) g5 (s (1)) = 95" (si(1))-
We next introduce a scheduling method that simply gives
Z gi(sit) ~ L, ©) priority to consumers with the shortest remaining processi
ieS(t) (demand) time (SRPT) at each scheduling time slot, without
i.e., assuming sufficient demand and a large user populati@king into account the demand profile unevenness. That is,
so thatg;(k) < L for all i, k, then (7) becomes for all t, S(t) satisfies:
; o Diesw 9i(si(t) < L,
B(t+1) < B(t+1), (10) | f0r6a"<]>. 2 S(1),
where the upper bound — max;es) 7i(t) < rj(t),
. 9 — if r;(¢t) = r;i(t) for somei € S(t), we randomly
B(t+1):=B(t)— =L+ Z Gi(si(t)). choose either customeror ;.
K ies(t)
So, we have shown: IV. NUMERICAL RESULTS
We now present results of numerical experiments to illus-
trate the performance of our scheduling algorithm in Sectio
Theorem 2.1:If at time ¢: Il and compare with the two alternative scheduling algonish
« o0,(t) are given for alli € U, in Section Il
e (9) holds, and
« scheduling byo; priority, with ties broken byg; (s;), A. Only PEV/PHEV Consumers
then B(t + 1) is (obviously) minimized with First, an input data set of consumer demand charging

- profiles as in Fig. 1 was generated according to the follow-
Bt+1) = B(t+1). ing random mechanism. We chosé = 1000, 7' = 480
minutes, H ~ Uniform(50,100), n ~ Uniform(60, 120),
Note that it's also possible to choos¥t) so as to directly ¢l ~ Uniform(0,7) and £[¢ ~ Uniform(0,¢). For this
minimize B(t + 1); but this requires a large combinatoriaparticular data set, the critical value &fin (4) is given by
search that is greatly simplified by a priority rule. We alsd = 5986.
note that the measurd(t) remains the same for the two We implemented the three scheduling algorithms for this
methodsM1 andM2, and so do the two upper bounﬁf{t) consumer demand portfolio data set. We next show the per-
and B(t). Finally note that this scheduling criterion is similaformance of our algorithm of Section I1. Fig. 2 depicts thiato
to the “service curve” [3]. unevenness measuf#t) and its two upper boundB(t) and
B(t). We see that the two upper bounds are both very 4ight
In Fig. 3, we compare the total unevenness meaB\t¢ of
) ] ) . our scheduling algorithm in Section Il with the first altetiva
_We now introduce two alternative scheduling methods. Firglchequling algorithmM3) in Section 1il. It is evident that
different variations of (2) are readily consideredg, by sim- 6 (otal unevenness measusét) of our algorithm is much

ply replacing the residual mean power requiremgii;(£))  smaller than that of the alternative one. This shows that our

with the initial mean power requirement spread out over ﬂ}ﬁgorithm is very effective in reducing the unevenness by
whole charging intervat; := 1,g;(1)/T. Thus, we have

taking into account the progressive peakedness in theefutur

IIl. ALTERNATIVE SCHEDULING CRITERIA

si(t)+p at each time instead of simply using the peakedness measure
oi(t) = ma [9:(k) — 4] (11) over the entire demand period.
“lspesm(O)=1 T It is clear that our scheduling algorithm is not work-
55 (1) +p conserving, that |s some resid.ual sulpply may not pe udilize
— max{0, max Z gi(k) — (p+ e at some time. This may be deswgble in order to avoid demand
0<p<r;(t)—1 overages. We compare the residual supply (headroom room

. . Feit) _ ~ to the overage thresholdl) at each time of our scheduling
This leads to an exact Lindley recursion fof wheni is algorithm with that of the alternative algorithms. L&t(¢) =
scheduled,

“Note that the plot shows the results for thi method, but as we have
oi(t) = max{0, gi(s;(t)) —e; +o;(t+1)}. noted, method$11 and M2 give the same schedule.
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N In addition, we used the following three performance mea-
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t Vii=— R(t) = — L—X(t));
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Fig. 3. Comparison of3(t) under Schedulaé and Schedule. where T} is the last time when the headrooR(t) is

less or equal to the maximum value of any consumer’s

charging profile. In the above numerical examglg,=
ZieS(t) gi(si(t)) be the amount of energy that are consumed  sup{t > 1: (L — X (¢)) < 100}, where 100 is the upper
at time t. The headroomR(t) = L — X(t) at each timet bound of the charging profile of all consumers.
is depicted in Fig. 4. From these plots, we see that all these2) The total residual demand,
algorithms result in some residual supply most of the time. -
The headroom under our scheduling algorithm shows a clear V2= Z”(T)gi(si(T));
decreasing trend in Fig. 4 (a) and (b). We observe a similar bu ieu
less clear trend in our second scheduling algorithm; see Fig3) The number of consumers who do not finish their service
4 (c) and (d). However, the SRPT algorithm does not seem at time7" (i.e, are not completely satisifed),
to have this feature, as shown in Fig. 4 (e). Note that after
a given point in time {p), the headroonR(t) may become Vs = Z Lsi(T) < mi},
large enough to exceed the maximum value of any consumer’s ieu
charging profile, see Fig. 4 (a), (b) and (e), while such wherel is an indicator function1{A} = 1 when the event
phenomenon is absent in Fig. 4 (c) and (d). This is becaudeoccurs andL{A} = 0 otherwise.
not many consumers are remaining in the system after thafThese three performance measures were evaluated and
point in time under our “Schedule 1" (Section II) or SRPTare given in Table I. First, observe that the two methods
algorithms, consumer demand needs to be satisfied in ordérSchedule 1 gave similar performance, and similarly the
of the demand charging profile, and not-completely satisfiésdo methods of Schedule 2. All approaches gave relatively
consumers remained at the end of the charging intefval small V;, implying that the utilizations under all scheduling
under “Schedule 2” (Section Ill) algorithms; see the follogy  algorithms were relatively high. Schedule 1 performeddyett
tables. than SRPT, with less total residual demand and fewer not



completely satisfied consumers, and Schedule 1 outpertbrme Assuming that a proportion of the grid’s power comes from
Schedule 2 in terms of not completely satisfied consumetise renewable energy, the overage threshblg now time-
even though the total residual demand under Schedule 2 wasying: L = L* + Ly, whereL* is the grid’s (constant) over-

smaller than that under Schedule 1. age threshold from the conventional supply, dndrepresents
renewable supply process assumed to be Gaussian distribute
P, [ ochedule L ochedule 2_ SRPT with i.i.d. marginalsLy ~ N(uo,03). Using the same data
V. | 26,9700 | 26.0100 | 28.7538 | 28.7538 | 24.8821 set of consumers’ demand-profiles as in Section IV-B, we get
Va 57874.79 | 57874.79 | 13789.52 | 13789.52 | 68153.58 L* = 7640.31 from (4) We chosel.* = 0.9L* = 6876.28’
Vs 8 8 890 80 £ o = 0.1L* = 764.03 and o = 0.2u0 = 152.81.
TABLE | The numerical results are given in Table IIl. Again, we

COMPARISON OF PERFOR/Z"LAGN;;:'HEGSURES FORTHE SCHEDULING  gee that the two method#ll and M2 of Schedule 1 had
' approximately the same performance measures, and sinilarl
for the two methoddM3 and M4 in Schedule 2. Schedule
1 outperforms SRPT. In particular, Schedule 1 had finished
all PEV/PHEV consumers’ charging requirement, while SRPT
B. Two Types of Consumers had nine not completely satisfied PEV/PHEV consumers.
eenewable energy, as the supplementary supply of the power
0 the smart grid, indeed enhanced the performance of all

loads which have a constant charging rdfg, such as air approaches: compare total residual demand in Table Il and
conditioners, electric heaters, and washing machinesh@olc Table lll. It is also observed that, even though the totabiesd

how our algorithms perform under a mixture of these two type emand under Schedule 2 is smaller than that under Schedule
of consumers, we also generated a second type of consu

€ i o

with H, — 50 and the charging time ~ Uniform (60, 120). ,t\:1ere are still more not completely satisfied consumedsun
. . chedule 2 than that under Schedule 1.

These two types of consumers were in equal proportion. The

A demand aggregator may also have to deal with flexib

number of not completely satisfied consumers for the first typ o Schedule 1 Schedule 2 p—
and the second type are respectively dend@H and V3(2). - M1 M2 M3 M4
. . . Vi 24.3625 24.3334 27.7019 27.7019 25.7367
An input data set of consumer demand charging profiles was —,—51700.00 [ 91800.00 | 13024.99 | 13024.99 | 118734.47
generated and we chode= 7641 as before for the data set. v 0 0 390 390 9
Numerical results, given in Table II, again show that the _Vi~ 72 71 0 0 74
two methodsM1 and M2 of Schedule 1 had approximately TABLE Il
the same performance measures, and similarly for the twoCoMPARISON OF PERFORMANCE MEASURES FOR THE SCHEDULING
methodsM3 and M4 of Schedule 2. For the measures of ALGORITHMS.

Vi1 and V5, Schedule 1 outperformed SRPT; in particular,

Schedule 1 finished all PEV consumers’ charging requirement
while SRPT had nine not completely satisfied PEV consumers,
which verifies that our algorithm gives priority to consuser V. CONCLUSIONS

with uneven demand profiles. We also observe that ScheduldVe considered the scheduling of deferrable and inter-
2 had a large amount of not completely satisfied consumégptible PEV/PHEV battery-charging load in a smart grid
even though the total residual demand was smaller than thRft two scenarios: only PEV/PHEV consumers, and a mix-

under Schedule 1. ture of PEV/PHEV consumers and constant-charging-profile
consumers. By numerical experiments, we showed how our

™ MlScheduIe '\%2 M3Schedu|e '3'4 SRPT pro_posed automated scheduling algorithm (Schedule 1) can

7 313366 313475 254380 | 254380 255503 satisfy much more consumers compared to other alterna-

V2 | 98950.00 | 98950.00 | 16541.00 | 16541.00 | 12243054 tive approaches in both cases. Since SRPT only focuses

VD 0 0 422 422 9 on the remaining charging time without considering peaked-

vy 7 7 0 0 7 ness/unevenness of each consumer’s charging profile, -it per

TABLE Il formed worst in the sense that both the total unfulfilled dedna

COMPARISON OF PERFORMANCE MEASURES FOR THE SCHEDULING  and the number of not completely satisfied consumers (at the
ALGORITHMS. end of the charging period). Although the alternative Scited
2 can reduce the total residual demand efficiently, there are
still many not completely satisfied consumers, especially i
the case of only PEV/PHEV consumers. With a supply of

C. Two Types of Consumers with Renewable Power Supplignéwable energy, Schedule 1 is also shown to significantly

) ) ) ) ) decrease the number of not completely satisfied consumers.
Renewable energy is playing an increasingly important role

in supplying power to consumers. Solar and wind [2] contitu REFERENCES
2% of the electricity generated in the US in 2009, and it is _ o

d that 30% of total electricity supplv will come from[l] S. Argade, V. Aravinthan, and W. Jewell. Probabilistiodeling of EV
expected tha 0 y supply charging and its impact on distribution transformer lossifef In Proc.
renewables by 2030 [6]. IEEE Int| Electric Vehicle Conference (IEVCRpril 2012.
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