The Tree Width of Auxiliary Storage

Gennaro Parlato (LIAFA, CNRS, Paris, France)

joint work with

P. Madhusudan (Univ of Illinois at Urbana-Champaign, USA)
Automata with aux storage

- Turing machines = finite automata + 1 infinite tape
 undecidable emptiness

- CFLs = finite automata + 1 stack
 Decidable emptiness

- Finite automata + 2 stacks; Finite automata + 1 queue
 \(\rightarrow\) undecidable emptiness

Studies into finding the “boundary” of decidability
Verification: renewed interest in automata+aux storage

- Static analysis and dataflow analysis of control flow
 - Context-sensitive static data-flow analysis of programs with recursion is essentially PDA emptiness
 - Reps-Horowitz-Sagiv; Sharir-Pnueli

- SLAM project from Microsoft Research
 - Predicate abstraction of software that abstracts data to Boolean domains [Ball-Rajamani-'90]
 - Constructs a PDA model and checks emptiness/reachability.
 - **BEBOP**: PDA emptiness using “summaries”
 - **MOPED**: PDA emptiness using regularity of reachable configs
 - **GETAFIX**: PDA emptiness using fixed-points

- Concurrent program verification using abstraction
 - Emptiness of multi-stack automata
 - Emptiness of distributed automata with FIFO queues
Decidable emptiness

Multistack pushdown automata with

- k-context-switches (Qadeer, Rehof - TACAS’05)
- k-phases (La Torre, Madhusudan, Parlato - LICS’07)
- ordered (Breveglieri, Cherubini, Citrini, Crespi-Reghizzi – JFOCS’95)
- Parameterized pushdown automata with k contexts (La Torre, Madhusudan, Parlato - CAV’10)

Distributed automata with FIFO queues

- finite state processes with polyforest architecture
- pushdown processes with forest architecture + well queuing (La Torre, Madhusudan, Parlato - TACAS’08)
- Non-confluent architectures + size 1 queues (Heußner, Leroux, Muscholl, Sutre - FOSSACS’10)
Decidable emptiness

Multistack pushdown automata with

- k-context-switches
- k-phases
- ordered
- Parameterized pushdown automata with k contexts

Distributed automata with

- finite state processes with polyforest architecture
- pushdown processes with forest architecture + well queuing
- Non-confluent architectures + size 1 queues

Uniform property:
Awkward definitions;
fragile algorithms
The question is …

So many decidable subclasses; so much awkwardness

Is there a robust common principle that explains their decidability?

Answer:

We present a general criterion that uniformly explains many of such results:

Decidable \iff Simulate by graph automata working on graphs of bounded tree width
Graph automata

- Fix a class C of Σ-labeled graphs
- A graph automaton over C is a triple $GA = (Q, \text{ tiles})$
 - Q is a finite set of states
 - $\text{tiles} \subseteq Q \times \Sigma \times Q$
- A graph G is accepted by GA if we can decorate each node with a state such that
 - Each edge can be tiled
Tree-width of graphs \(G=(V,E) \)

A tree decomposition of \(G \) is a pair \((T, \{bag_z\}_z \text{ is a node of } T)\), where \(T \) is a tree and \(bag_z \) is a subset of \(G \) nodes, such that
- every edge of \(G \) has both endpoints in some bag
- for every node of \(G \) the set of bags that contain it form a subtree of \(T \)

The **width** of the tree decomposition is the maximum of \(|bag_z| - 1\) over all \(T \) nodes \(z \)

The **treewidth** of a graph \(G \), is the minimum such width over all tree decompositions of \(G \)

Tree width of a tree is 1 😊

Tree width of a \(k \)-clique is \(k-1 \).
Monadic second-order logic on graphs

MSO is given by the following syntax

\[\varphi ::= x = y \mid E_a(x, y) \mid x \in Z \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists x. \varphi(x) \mid \exists Z. \varphi(Z) \]

where

- \(x, y \) are first-order variables, \(Z \) is a second-order variable
- \(E_a(x, y) \) is a binary edge relation

- A class of \(\Sigma \)-labeled graphs \(C \) is MSO-definable if there is a \(\varphi \) such that

\[C = \{ G \mid G \text{ satisfies } \varphi \} \]
MSO on graphs + GA emptiness

- Over the class of all graphs, MSO satisfiability is undecidable (even FO is undecidable).

- The satisfiability problem for MSO on the class of all graphs of tree width k, for any k, is decidable. [Courcelle]

- If C is any class of graphs of
 - bounded tree-width &
 - MSO definable,
 then satisfiability of MSO on C is decidable.

- Graph automata emptiness on $C \rightarrow$ MSO satisfiability on C

- Hence graph automata emptiness on any class C of MSO definable graphs of bounded tree-width bdd tw is decidable.
Main schema for decidability

Emptiness
Automaton with auxiliary storage

Reduction

Emptiness
Graph Automaton over a class C
- MSO definable
- Bounded treewidth

auxiliary storage

RUN=

Compile down the auxiliary storage in the graph

Simple graph
(no auxiliary storage)
Simulation for pushdown automata
PDA ↔ Nested words

RUN
PDA \leftrightarrow Nested words

RUN
A NW graph captures the behavior of a run
- The stack is compiled down into the nested word (nesting edges)

The class of NWs is MSO definable
- linear order + nesting edges; nesting edges should not cross

Graph automata working over this graph can simulate a PDA
Nested words have tree-width 2

Hence the emptiness problem is decidable
Simulation for Multistack Pushdown Automata
A MNW graph captures the behavior of a run
 - Stacks are compiled down into the graph (nesting edges)

The class MNWs is MSO definable

Unbounded tree-width
 - (undecidable emptiness problem)
Bounded-context MPAs

- k context-switches MPA

(Qadeer, Rehof: TACAS’05)

In a context only one stack can be used

The class of MNWs with k contexts is
- MSO definable
- tree-width: $k + 1$

Hence emptiness problem is decidable.
Bounded-phase MPAs

- k-phase MPA

(La Torre, Madhusudan, Parlato - LICS’07)

In a phase only one stack can be popped (all the stacks can be pushed)

MNWs with k phases are
- MSO definable
- tree-width: $2^k + 2^{k-1} + 1$

Hence emptiness problem is decidable.
Ordered MPAs

 Only the first non empty stack can be popped
 All stacks can be pushed

 Ordered MNWs are
 - MSO definable
 - tree-width: \((n+1) 2^{n-1}+1\), where \(n\) is the number of stacks

Therefore emptiness problem is decidable.
Simulation for distributed automata with queues
Distributed automata with queues

- Distributed automata with queues with
 - finite state processes
 - pushdown processes

Network of processes
Queue graphs (finite processes)

- A queue graph captures the behavior of a run
 - queues are compiled down into the graph (yellow edges)
- The class of queue graphs is MSO definable
 (linear orders for each process, FIFO edges)
- Unbounded tree-width
Decidable class (La Torre, Madhusudan, Parlato, TACAS’08)

- Finite processes - polyforest architectures

A directed graph is a polyforest if the underlying undirected graph is a forest

TREE-WIDTH: $3n-1$

Hence emptiness problem is decidable.
A stack-queue graph captures the behavior of a run
- Stacks and queues are compiled down into the graph
- The class stack-queue graphs is MSO definable
- Unbounded tree-width
Decidable class (La Torre, Madhusudan, Parlato, TACAS’08)

- Pushdown processes - directed forests + well-queuing

Well-queuing condition:
 each process can receive a message only when its stack is empty

TREE-WIDTH: $3n-1$

Hence emptiness problem is decidable.
Conclusions
We give simulations for …

- **Pushdown automata**
 - Behavior graphs: nested words
 - Tree-width: 2

- **n-stack pushdown automata**
 - Behavior graphs: n-nested words (unbounded tree-width)
 - Restrictions
 - k-contexts tree-width: \(O(k) \)
 - k-phases tree-width: \(O(2^k) \)
 - ordered tree-width: \(O(n2^n) \)

- **Distributed automata with n-processes & FIFO queues**
 - Behavior graphs: stack-queue graphs (unbounded tree-width)
 - Restrictions:
 - finite state processes with polyforest architecture - tree-width: \(O(n) \)
 - pushdown processes with forest architecture + well queuing - tree-width: \(O(n) \)
Decidable emptiness problem

Multistack pushdown automata with

- k-contexts (Rehof, Qadeer - TACAS’05)
- k-phases (La Torre, Madhusudan, P. - LICS’07)
- ordered (Breveglieri, Cherubini, Citrini, Crespi-Reghizzi - Int. J. Found. Comput. Sci.’95)
- Parameterized pushdown automata with k-rounds (La Torre, Madhusudan, P. - CAV’10)

Distributed automata with FIFO queues

- finite state processes with polyforest architecture
- pushdown processes with forest architecture + well queuing (La Torre, Madhusudan, P. - TACAS’08)
- Non-confluent architectures + eager runs (Heußner, Leroux, Muscholl, Sutre - FOSSACS’10)
Decidable emptiness problem

Multistack pushdown automata with

- k-contexts
- k-phases
- ordered

A general criterion that uniformly explains many decidability results for automata with auxiliary storage

Complexity: matches best known time complexity
New results can be easily derived

- For multistack pushdown automata considering phases where in each phase only one stack can be pushed but all the stacks can be popped can be shown decidable
 - Flipping the direction of edges you get bounded-phase MNWs

- General result can be extended to graphs of bdd clique width

- Extends to infinite words
 - Eg. Buchi/parity ordered multi-stack automata is decidable

- A general Parikh theorem
Take-home message

New view of automata with storage

- Don’t be “mesmerized” by the storage capabilities and restrictions
- Look instead at the underlying graph that captures the storage
 (graph automaton working on these graphs must be able to simulate the automaton with aux storage)
- Look at the tree-width of this graph

Thank you
Future work

- Graph automata working over bounded tree-width graphs are a powerful class that can explain many emptiness results.

But what about complementation? Is there a “graph-theoretic” property that captures when automata can be complemented?

(Bounded phase visibly pushdown languages are complementable!)

- We cannot handle counters effectively.
 - Decision procedures for counters are very different (Petri-net coverability/WQO)

Can we incorporate this decision procedure also into a general theory?